
Developing with Drive Playback

Emil Dautovic, Kristoffer Nilsson, 
Renjith Rajagopal and Peter Winzell 



OEM
Proprietary data

3rd parties/
partners 

Sharing signal data in automotive is complex and hindering collaborations



Background

• VSS removes our proprietary issue 
with sharing sensor data.

• Faster prototyping and faster to 
production for Android automotive 
applications

• Facilitating 3rd party development

• Edge device, model training that 
eliminates need of sending all sensor 
data to cloud

• Proprietary free emulator



The history 
– software in cars 

Starting 
end 1980s 

/early 1990s 

• ABS
• Airbags 
• Vehicle Dynamics

And this is how future engineers looked like back then 



The present 

Software is 
everywhere

• SW a main 
differentiator

• Driver in 
megatrends



Outlook on the automotive software market 

Source: Market reports 

https://sites.google.com/view/topmarketreports/market-reports/automotive-software


The complexity growth ≈ 300 percent 

Every vehicle has:

● 100 control units
● +1000 software components
● +10,000 signals exchanged 

between subsystems 

All to be designed, developed, integrated, 
tested, and validated to work individually as 
well as in conjunction with each other. 



Optimize for iteration speed

What Makes A Good Engineering Culture 
by Edmond Lau

Quick iteration speed increases work motivation 
and excitement. Infrastructural and 

bureaucratic barriers to deploying code and 
launching features are some of the most 

common and frustrating reasons that engineers 
cite during interviews for why they’re leaving 

their current companies.



To get stuff done - attract software developers

Developer Nation report: 33.6 million
active software developers worldwide

https://www.developernation.net/developer-reports/dn23


🙀



Software ownership is crucial 

Increase speed and reduce risk
With an iterative way of working

Innovate & realize new ideas
With the right people

Software-centric 
development

With seamless collaboration



Agile, flexible & lightweight 
development platform 

DEVELOPER’S
IDEAS & NEEDS

CLOUD & 
COLLABORATION

QUALITY & 
SAFETY 

Remotive
Broker

Innovation 

speed

Software 

ownership

Best practices 

& partner up

Business drivers

Process, language & hardware agnostic



RemotiveBroker (a.k.a software ECU)
- the core component and data aggregator

Supports gRPC
Use the programming language of 
your choice including Python, Rust, 
C++ etc.

Supported network protocols
CAN (.dbc), SocketCAN, FlexRay
(fibex /arxml), LIN (.ldf), UDP arxml, 
LDF.

Record and playback
Easy to record signals -
replay locally or in the cloud

Remote access
Access the product from anywhere 
over the Internet

Any Linux/Docker-capable HW
Just download the Docker-image, e.g. 
to development PC or Nvidia Drive

Host Mobility
Preconfigured 
- HMX 
- MX-4 T30 FR

RemotiveBox
Raspberry Pi + CAN shield

Hardware of your choice

Protocols and features

Ethernet

Automotive 
Ethernet

CAN

LIN

Device 
under test /

Vehicle

FlexRay

Docker capable 
hardware/cloud

Developer’s 
Laptop Remotive

Broker



Platform architecture
- enabling easy access to 
vehicle data from anywhere RemotiveCloud - COLLABORATION

− Collaborate internally and with partners
− Store and share drive cycles 
− Signal databases and user data
− Run/Provision RemotiveBrokers
− Replay drive cycles
− Real-time mirroring of local brokers

ECU

ECU

ECU

ECU

ECU Core
Computer

IN-VEHICLE

− Advanced Engineering/ 
Prototyping

− Record drive cycles
− Real-time mirroring through 

the cloud

LOCAL
ACCESS

TEST RIGS

− Continuous 
Integration

− Restbus 
simulation

ECU

ECU

Remotive
Broker

Remotive
BrokerRemotive

BrokerRemotive
Broker

Remotive
BrokerRemotive

BrokerRemotive
Broker

LOCAL
ACCESS

REMOTE
ACCESS

REMOTE
ACCESS



Solution overview

ECU

ECU

ECU

ECU

ECU Core
Computer

1. RECORD DRIVE CYCLES

A RemotiveBroker records drive cycles 
scenarios including potential errors in any 
vehicle, that could be a mule in early stage 

development

Remotive
Broker

Remotive
BrokerRecordings

2. UPLOAD DRIVE CYCLES

The recorded drive cycles are uploaded and 
stored in the cloud 

VEHICLE HAL

CAR SERVICE

CAR API

ANDROID 
SYSTEM 

SERVICES

ANDROID 
FRAMEWORK API

APPS

3. FILTER AND SHARE 

The relevant signal set is filtered out and 
signals are renamed according to COVESA VSS 

in order to hide proprietary information

4. REPLAY DRIVE CYCLE

The custom Vehicle HAL connects to the 
RemotiveCloud and starts the playback of the 
drive cycle; with the result that the AAOS stack 

thinks it is running in the vehicle where the 
drive cycle was recorded 



RemotiveCloud

Recorded data

Proprietary OEM data Filtered VSS data

Remotive
Broker

Live data

3rd parties/
partners 

Share signals 
according to VSS

Case study: COVESA & VSS

● No issue with different naming 

conventions

● OEMs choose exactly what to 

share

● Collaborate, innovate & get stuff 

done!



Demo - introduction 



VehSpd

18



Recorded data becomes VSS

19

VehSpd Vehicle.Engine.SpeedRemotive
Broker



gRPC is used to interface the RemotiveLabs platform

20

VHAL

Vehicle.Engine.SpeedgRPC request/response

Remotive
Broker



21

package com.android.data.repository

import android.car.Car
import android.car.VehiclePropertyIds
import android.car.hardware.CarPropertyValue
import android.car.hardware.property.CarPropertyManager
…
override fun getCarSpeed(): Flow<Speed> {

return speedFlow
}

Conclusions…



Overall conclusion

• Collaborate - use standardised signal names VSS so it gets easier to work together

• Innovate - everybody that needs should have access to data to try ideas

• Get stuff done - enable partners to do application development




