Commercial Vehicle Birds of a Feather A standards-based approach to vehicle fleet telematics data to build a modern transportation ecosystem for all stakeholders.

Ted Guild, Geotab Thomas Spreckley, ETAS

August 2023

Copyright ©2023 COVESA

BoF Kickoff Agenda

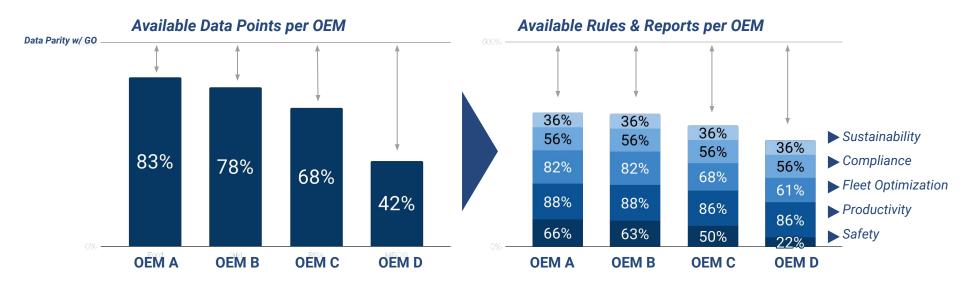
The context:

why commercial customers need consistent data to manage their vehicle fleets

The approach:

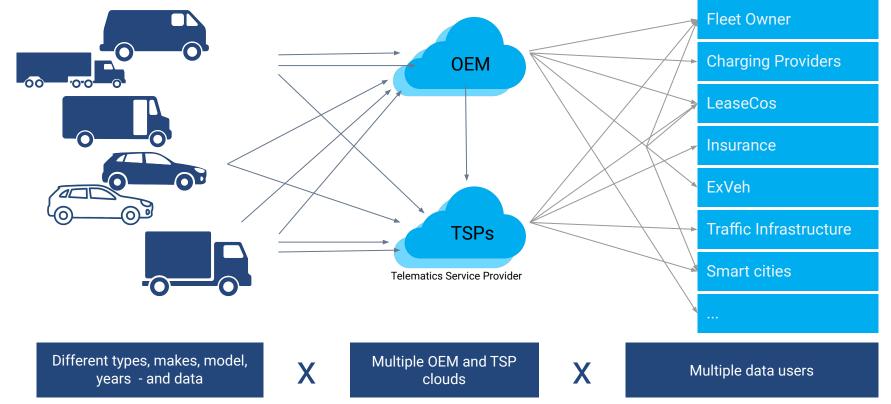
An agreed "best practices" recommendation to be applied by the ecosystem

The benefits:

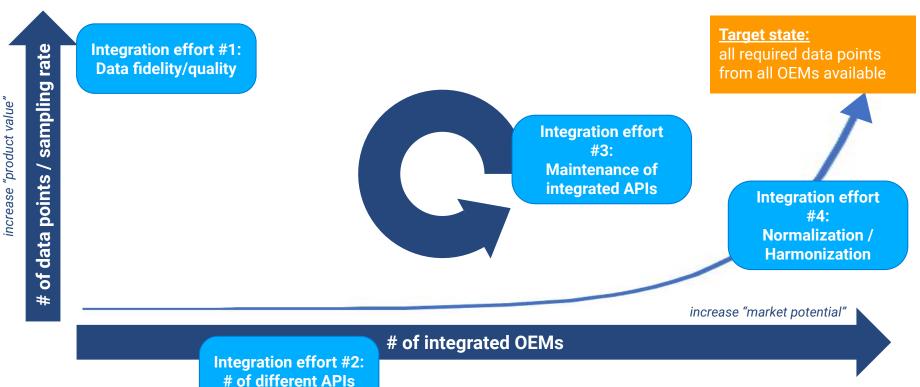

Value added products, reduced integration efforts, value for all stakeholders

Commercial Fleets Run on Data

As data drives their businesses, they have come to rely on and will increasingly require reliable, secure, high quality information platforms



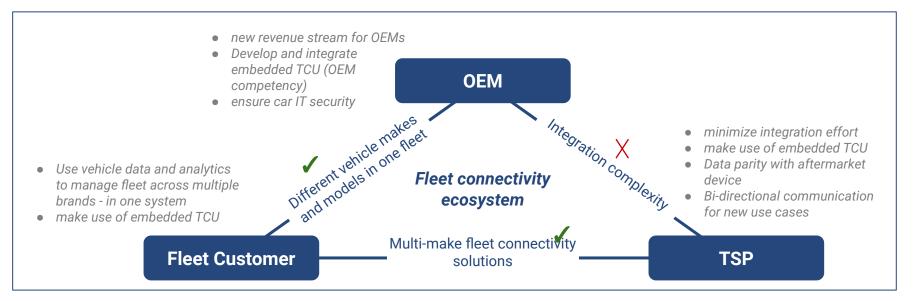
The Issue: OEM data currently not suited for all use cases and different across OEMs



To make best possible use of the OEM data, it has to match the data (in quantity and quality) generated by aftermarket devices (including bi-directional communication!)

Today: Not leveraging the value of data, but creating complexity with integration efforts

Result: enormous efforts to integrate and maintain OEM APIs - not value adding for customers



In 2016, McKinsey Report predicted \$750 Billion/year revenue for Telematics by 2030

Data monetization: The missed gold rush of the software-defined vehicle

- Offered services were not interesting enough to the customer because user experience was tedious. Applied remedy: bundle telematics into vehicle sales
- **Despite numerous reorgs** most OEMs have not restructured their business for information revenue streams
- Solutions are one-offs. Scaling across partners or better across OEMs is not established leading to fragmented solutions.

Complexity reduction by using standards for non-differentiating and non-competitive tasks

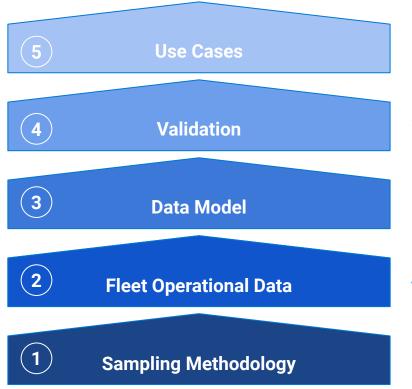
For a **seamless** and **value-adding product offering** in an **ecosystem**, interfaces between parties should be **frictionless and interoperable** based on agreed **standards and best practises**

"Agreed best practice" approach enables revenue generation, innovation and customer satisfaction

OEM & Supplier

- collect and provide the right data for their customers' needs, more efficiently (lower bandwidth and cloud storage)
- ✓ Safeguard future vehicle sales (customers demand data)
- Iower product development and integration costs with standardized solutions

Fleet Customer


- ✓ get access to similar data / frequency across brands
- improve their productivity, safety, sustainability, regulatory compliance and grow their business
- Interoperability with other systems, beyond Fleet Telematics (e.g. ins, roadside assistance, fuel card, ...)

TSP

- more pertinent insights and services for (the whole) fleet with the right data
- Less investment in API integration
- New product creation based on easy shareable data
- Easier support leads to better customer experience

easier for any prospective partner to **join the ecosystem** and to integrate with and consume data - robust **data marketplace** for all parties

5 elements of the initial "recommendations"

Productivity, Optimization, Safety, Sustainability, Compliance, Expandability

Support customers by ensuring that fleet data requirements can be met with certain vehicles

COVESA / W3C Vehicle Signal Specification (VSS)

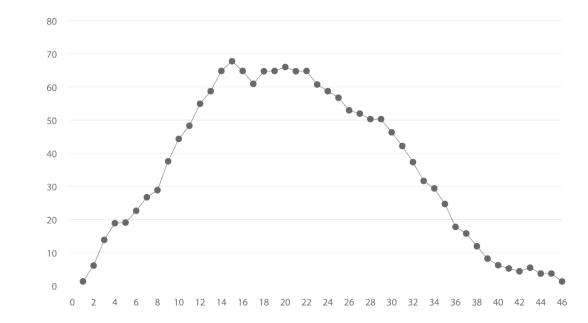
<u>Modest set of specific vehicle signals</u> and attributes including importance and preferred units

Curve logging (maximum error) vs fixed time

Why Sampling Methodology is relevant

- Typically OEMs provides fixed interval (time or distance), event or both
- More data not necessarily better (e.g. GPS @1 sec) relevant data is needed
- <u>Curve logic</u> provides intelligent lossy compression, open sourced under MPL
- Produces a **better representation** and is **more efficient** (lower cost)

Example: U-Turn Detection


But the u-turn detected by Geotab on Go device indicates the u-turn was taken at the intersection

While the OEM data misses the context because of unavailability of data for 30 seconds

How Curve logging works

- Patented method of moving data efficiently from vehicle to server
- Key value-add: Data is analyzed on the server rather than algorithms in the device

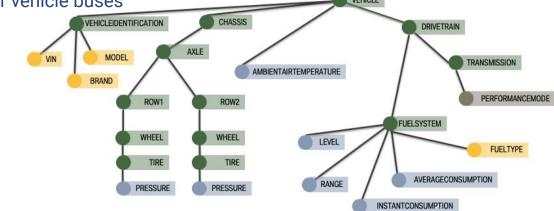
More Info: How it works (blog post) Whiteboard video with Neil Cawse Curve Logging @ COVESA Curve // Github

Curve logging can be implemented by OEMs on their embedded TCUs

Most needed Data Points, ~80 to start with

Pillar Y	Use case # 😐	Use Case 🔫	Data Point / Feature 😑	Recommended Frequency / Data Reporting Logic 👳	Importance* \Xi
Sustainability (EV)	SUSTAINABILITY05	- Identify opportunities for Fleet electrification	GPS	Ideal: smart/curve logic (https://github.com/Geotab/curve) to detect significant change in speed and/or direction and send corresponding data points If smart loggin isn't available, 1 Hz	Must Have
Sustainability (EV)	SUSTAINABILITY05	- Identify opportunities for Fleet electrification	Total fuel used (since activation) or Trip Fuel Used	every ignition event	Must Have
Sustainability (EV)	SUSTAINABILITY06	- Ensure EVs are appropriately charged and fleets can run efficiently	EV battery charge % / state of charge (SOC)	ideal: every 1% change during driving and charging min: every 1 min during driving and every 2 min during charging	Must Have
Sustainability (EV)	SUSTAINABILITY06	 Ensure EVs are appropriately charged and fleets can run efficiently 	Range remaining	every 1 min during driving and every 2 min during charging	Must Have
Sustainability (EV)	SUSTAINABILITY07	- Optimize charging costs based on zones	GPS	Ideal: smart/curve logic (https://github.com/Geotab/curve) to detect significant change in speed and/or direction and send corresponding data points If smart logging isn't available, 1 Hz	Must Have
Sustainability (EV)	SUSTAINABILITY08	 Ensure EVs are appropriately charged and fleets can run efficiently Identify and track charging events to control charging costs 	Charging Status (AC/DC)	logged at start of charge (charging AC or charging DC) and end of charging (not charging)	Must Have
Sustainability (EV)	SUSTAINABILITY09	- Identify charging costs and optimize charging schedule	AC / DC charging energy in	every 2 min during charging	Must Have
Sustainability (EV)	SUSTAINABILITY10	 Identify electric energy economy and real-world range 	Driving energy out	every ignition event	Must Have
Sustainability (EV)	SUSTAINABILITY10	 Identify electric energy economy and real-world range 	Driving energy in (from regenerative braking)	every ignition event	Must Have
Sustainahilitu (EVA		- Identify electric energy economy and real-world	Deluina idia anaray aut	even lenition avent	Muset Llouis

Source: Fleet Management Data Set, including Use Cases, frequency and Importance


(3)

Proposal to use COVESA Vehicle Signal Specification (VSS)

The Vehicle Signal Specification (VSS) is an initiative by <u>COVESA</u> to define a syntax and a catalog for vehicle signals. In short this means that VSS introduces:

- a. A syntax for defining vehicle signals in a structured manner.
- b. A catalog of signals related to vehicles.

It focuses on vehicle signals, in the sense of classical attributes, sensors and actuators with the raw data communicated over vehicle buses

(3)

Representing sampling campaigns in VSS

A proposed initial deliverable will be to produce recommended signals, leveraging **overlays**, in VSS with sampling guidelines. Easy to use as configuration or generate code from.

Example signal in YAML:

Vehicle.LowVoltageBattery.CurrentVoltage: datatype: float description: Current Voltage of the low voltage battery. type: sensor unit: V audiences: FLEET,SERVICE purpose: MAINTENANCE_07 collection: 1800HZ categories: MAINTENANCE,PRODUCTIVITY importance: MUST

Fleet Customers benefits from recommendations

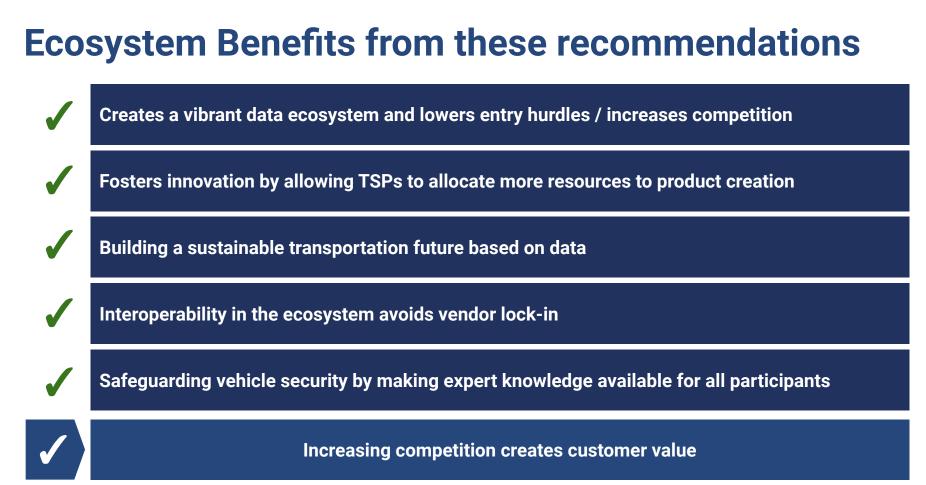
Data consistency - enables vehicle integration across vehicle manufacturers

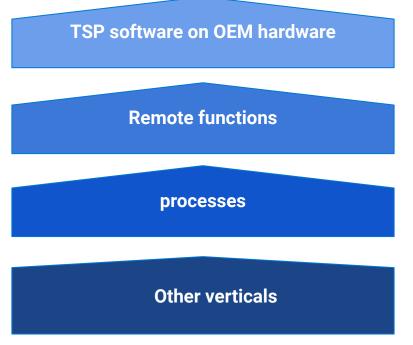
Simplified integration and analysis - unified data structure enables scalability for fleets to easily change and expand type and number of vehicles.

/

Interoperability & vendor independence - freedom to choose best in class vehicles, software/cloud platform, telematics services and analytics

Scalability - future proofing their business


Collaborative industry-wide standardization - enable better decision making, improved efficiency, better able to adapt to evolving industry trends


Pay for product value, not technology integration

Benefits for OEM and Supplier

More to come...

common/standardized API (e.g. COVESA + AutoSAR effort)

E.g. door lock / unlock, immobilizer, preheating, remote charging, charging presets, remote reset of headunit ..

Harmonized VIN eligibility and vehicles activation APIs + consent management

These conventions can be applied to other vertical industries' data interests: insurance, ev charging, maintenance, regulatory compliance...

What can you do now?

Inform yourself

Commercial Vehicle BoF Charter

<u>OEM enabled Fleet Management Data Recommendations</u> - <u>defined set of specific vehicle signals</u> <u>Eclipse Fleet-Management blueprint</u>

Contribute and provide feedback

COVESA Commercial Vehicle Birds of a Feather (BoF)

Join (attend the regular meetings), refine scope, provide input, contribute, join plugfests & SDV hackathons Direct interested colleagues towards this effort

Implement and endorse recommended best practice

Reach out to ETAS and Geotab if you are looking for support and experience in implementing "best practices" or curve algorithm on your TCU.

Fleet operators can encourage OEM and others to adopt through their procurement process