VSS in-vehicle
KUKSA State of the Union — Android and the Return of VISS C OVE SA

JeLVR .
sl &R "-~. Acceleratmgthe future of connected vehicles

Sebastian Schildt, ETAS GmbH,
COVESA'AMM, October 12t 2023

' ; ' \ /| S hr»,"
- ' nd’ \| /) % /]_ \
G0e \ \ —_ _ - §

About: What are we talking about

in-vehicle
Vehicle e
We like Signal which can be used for cloug edg SDV
Specification _]
qua\\tv d"agnosﬂcs

While this is all amazing,

we are most passionate about providing and using VSS in-vehicle

- COVESA

= . .:,’_’;‘A
Taxonomy of in-vehicle VSS components ,///-//”

Client
VSS Consumer

A

VSS Server @ Vehicle
Signal
Specification
A A
l Y
Client Client Client
VSS Provider VSS Provider VSS Provider
data-provider actuation-provider

®

KUKSA

&

l

k-\\.‘*té.\‘\: Vsl

Interacts with Vehicle represented by / \\\\
the VSS model

= Vehicle Computer function
= |VIApp
= External consumer device

Holds current vehicle state in VSS format
Provides an API to interact with VSS signals

VSS provider syncs of the vehicle with VSS
model of the server

. GETERI ol [l makes sure that the actual state of
a vehicle is represented in VSS (historically known
as “feeder”)

. ETR LI (o] BT Te Y/ [T8 makes ensure that the target

value of a VSS actuator is reflected by the actual
state of a vehicle

5 October 2023 |

Copyright ©2022 COVESA

https://github.com/eclipse/kuksa.val/blob/master/doc/terminology.md

The previous episodes... g
N

= COVESA All members Meeting October 2022

= Why in-vehicle is a good place to start deploying VSS
= FOSDEM 2023, February 2023

= A deeper dive into KUKSA architecture and usage
= COVESA All members Meeting April 2023

= Deployment blueprints using VSS in-vehicle (how open/dynamic do you need your system?)
= Security considerations
= Automotive Grade Linux All Member Meeting Summer 2023

())
= Status of Automotive Grade Linux adopting VSS and integrating KUKSA

~ COVESA

https://wiki.covesa.global/download/attachments/32079873/VSS-in-Vehicle.pdf?version=1&modificationDate=1667289275933&api=v2
https://archive.fosdem.org/2023/schedule/event/kuksa/
https://wiki.covesa.global/download/attachments/64979378/In-Vehicle-Deployment.pptx?version=1&modificationDate=1683230864896&api=v2
https://aglammsummer23.sched.com/event/1NlSH/evolving-vss-usage-in-agl-scott-murray-konsulko-group
https://static.sched.com/hosted_files/aglammsummer23/35/Evolving%20VSS%20Usage%20in%20AGL.pdf%3F_gl=1*q9fo0t*_ga*NDI1ODU0ODAzLjE2OTY3NjM3ODE.*_ga_XH5XM35VHB*MTY5Njc2Mzc4MC4xLjEuMTY5Njc2MzkxMC4xNS4wLjA.
https://www.youtube.com/watch?v=YL3pYKsNzZQ

VSS and Android

~ COVESA

10 October 2023 | Copyright ©2023 COVESA 15 Al et

What about Android?

~ covesa

8 October 2023 | Copyright ©2022 COVESA | 6

A closer look: Android (for) Automotive

= Android Automotive is common choice for infotainment systems and
often also a base for “third party” functions

= Android Automotive offers the “VHAL” mechanism to access certain
Vehicle data

= Using Android Automotive without_ VHAL, is a dumb idea
= You are loosing the ecosystem benefit, that likely lead to the
decision to use Android in the first place
= Good news: If you are a VSS user, you definitely can use a subset of your
VSS data to provide a VHAL!
= This pattern has been shown in recent COVESA meetings, i.e.
and

la %f\g\

. COVESA

8 October 2023 | Copyright ©2023 COVESA | 7

https://wiki.covesa.global/download/attachments/64979378/Developing%20with%20Drive%20Playback_COVESA%20AMM%202023-04-26.pdf%3Fversion=1&modificationDate=1683294740333&api=v2
https://wiki.covesa.global/display/WIK4/COVESA+All+Member+Meeting+~+April+25-27%2C+2023?preview=/64979378/64979520/VISS%20-%20Android.pdf

VHAL limitations

= You might want to use more datapoints for you internal functionalities that you
provide via VHAL
= You might not want to entrust Android Security and ACL model with all your data

VHAL

‘mhvi

= The VHAL implementation is a vendor component that baked into your Android
system image, it is harder to update than just an app
= Changing or extending VHAL -> Android system update

{ = What about your customer’s smartphones?
= Not VHAL there

COVESA

8 October 2023 | Copyright ©2023 COVESA | 8

KUKSA: Enable a direct VSS interface besides VHAL -~

* A Kotlin (te programming language used on the Android platform) library wrapping the standard
KUKSA GRPC API (i.e. like the Python binding)
* Run on any Android system, usable from Kotlin an Java language applications
* You are independent from Android system updates to support new data points
 The lib is embed into the application
* When developing a non-Automotive Android App, or accessing non standard OEM specific
datapoints without needing to modify the Android system/vendor image

o J \ Vehicle
VHAL + Signal
Specificatiol N
« 0° A J E $H A «

|

é ‘

. covesa

8 October 2023 | Copyright ©2023 COVESA | 9

Enable a direct VSS interface besides VHAL

: Available as Open
Source today!

VHAL KUKSA Kotlin

binding

VHAL Adapter

KUKSA Kotlin binding

Android System

Android Automotive System

JddD VSIMI

Databroker <

DKUKS/\

COVESA

10 October 2023 | Copyright ©2023 COVESA | 10 R E O —

Freshly backed: kuksa-android-sdk

= Get aninitial version at
= Write Kotlin (or Java) apps gains KUKSA databroker leveraging your complete VSS model

val managedChannel = ManagedChannelBuilder.forAddress(host, port)
.usePlaintext()
build()
val connector = DataBrokerConnector(managedChannel)
dataBrokerConnection = connector.connect()

val fields = listOf(Types.Field.FIELD_VALUE)

val property = Property("Vehicle.Speed", fields)

val response = dataBrokerConnection.fetch(property)
’ response.entriesList[0].value

TestApp

Connection

Disconnect

Properties

#

Field Type
FIELD_VALUE

-2023-10-11 10:42:29:674

org.eclipse.kuksa.proto.vl.KuksaValV1$GetRespon
se@968437b5

data_type: DATA_TYPE_FLOAT
data_type_value: 11

description: "Vehicle speed.”
entry_type: ENTRY_TYPE_SENSOR
entry_type_value: 2

}

path: "Vehicle.Speed"

value {
float: 120.0
timestamp {

nanos: 230588424

8 October 2023 | Copyright ©2023 COVESA

| 11

~ covesa

https://github.com/eclipse-kuksa/kuksa-android-sdk

U A e

Sneak Peak: Android Example App

Showcase how to build an Android App based on VSS data
using KUKSA databroker

Serves as a blueprint for your own apps

See it live at next Eclipse SDV hackathon November 28 - 30,
2023 in Munich: https://sdv.eclipse.org/sdv-hackathon-

2023/

Code online shortly before or after

~_COVESA

8 October 2023 | Copyright ©2023 COVESA | 12

https://sdv.eclipse.org/sdv-hackathon-2023/
https://sdv.eclipse.org/sdv-hackathon-2023/

KUKSA and VISS

"COVESA

%7 Azeetng v Anate 3l conected vaticke

10 October 2023 | Copyright ©2023 COVESA | 13

Other APIs: VISS

VISS is a W3C API to
= Access VSS data via websocket VISS V1 and V2) or HTTP/MQTT

VISS & KUKSA have a turbulent past

= Legacy KUKSA val-server is a C++ VSS server that started supporting only VISSv1
= |t extended VISS

= |t supported a small subset of VISS V2
= There were — never finished moves — to change from VISS

= Current RUST based VSS server databroker never supported VISS, instead is uses a GRPC
based API

= We felt —for our use cases- it brought too much complexity/features and not
enough performance

We are currently looking into VISS again

~ _COVESA

8 October 2023 | Copyright ©2023 COVESA

https://github.com/w3c/automotive

Reasons No

m

you do it!

= VISS predominantly developed with an "Application mindset”
= Not much focus on providing data — which is fundamental in
KUKSA
= Was extendend in earlier KUKSA version
= JSON + Websocket (HTTP/MQTT) is not the best technology ina

VSS Consumer

\

4

vehicle, when you expect VSS Server -
= mediocre “last generation Pi” processing power . . S
= Likely want to work with compiled languages such as C++,
Rust y L)
= Scope of features in VISSv2 grew much beyond what we want to Vs provider Vs Provider vSS Provider
support in a small, efficient in-vehicle application ac‘”a“°'°’°v'der
® %
KUKSA

10 October 2023 | Copyright ©2023 COVESA | 15

Reasons Yes r,;f///// 1\\\%‘

» Using JavaScript based stacks (nodelS), writing PWA (“HTML5
apps)
* Websockets+JSON much more accessible than GRPC
* Most applications need only very basic functions(get/set
(actuators) / subscribe (sensors)

Client
VSS Consumer
A ode-
VISS would be good
Y

We currently have two experiments

= |mplement it as an external component ion top of KUKSA GRPC interface: VS Server - e
A
= Keep databroker lean !
Client Client Client
VSS Provider VSS Provider VSS Provider

data-provider actuation-provider

= |mplement it in databroker: l
= Can be compiled optionally
= More efficient ® #

~_COVESA

10 October 2023 | Copyright ©2023 COVESA | 16

https://github.com/eclipse-kuksa/kuksa-viss
https://github.com/eclipse/kuksa.val/pull/642

.ﬁr"’”:::- .
VISS+KUKSA way forward iR
g //fi \\.\‘h
= We still feel
= Qur GRPC interface is the way to go for providers, and in vehicle functions (written in compiled
languages)

= For applications based on more “web” tech stacks, as you may find on infotainments, or user
device’s something like Websocket-based VISS may be more accessible
= We will make up our mind, whether we want an external version, or databroker integrated one
= You can help us make up our mind. We are open source after all

We will — as always — try to implement what is best for our specific use case/product ad our users, we
intend our subset to be compatible with VISS V2.

We believe it might be a good idea - on W3C VISS side to define a very minimal base level of “VISS-
compliance”, i.e. call what we are aiming for “VISS level 1 compliance”, and potentially define other tiers

-> Happy to discuss

~ _COVESA

10 October 2023 | Copyright ©2023 COVESA | 17

VSS Mocking

COVESA

W Mzretng v Anate 3t conecte aeticke

10 October 2023 | Copyright ©2023 COVESA | 18

Mock Service

= Testing business logic against VSS is not always easy =

= |n KUKSA you could manually set some values using n
the test clients = tedious

mock_datapoint (
path="Vehicle.Speed",
initial_value=0.0,
behaviors=[
create_behavior
trigger=ClockTrigger(0),
action=create_animation_action(

duration=10.0,
repeat_mode=RepeatMode.REPEAT,
values=[0, 30.0, 50.0, 70.0, 100.0, 70.0, 50.0, 30.0, 0.0],

AW LV

—9

how- A
0NN
d//:;/? R\:\Kh
You could connect a complete vehicle/bus
simulation 2 complex
Solution: KUKSA Mock Service

= Registers as KUKSA provider
= Describe behaviour using simple DSL based on VSS

mock_datapoint(
path="Vehicle.Body.Windshield.Front.Wiping.System.Mode",
initial_value="STOP_HOLD",
behaviors=[
create_behavior
trigger=create_event_trigger(EventType.ACTUATOR_TARGET),
action=create_set_action("$event.value"),

10 October 2023 | Copyright ©2023 COVESA

~ COVESA

| 19

https://github.com/eclipse/kuksa.val.services/tree/main/mock_service

Summary

= VSS in vehicle is a good idea
= You can get more out of Android (Automotive) with VSS
= VSS can be the base for VHAL
= KUKSA Kotlin library available today to enable you complete VSS
models in any Linux
= A base subset of VISS is useful for apps written using web technologies

= Experiment with and/or contribute to KUKSA VSS server
= Engage in VSS online meetings and see you next AMM

_ COvESA

10 October 2023 | Copyright ©2023 COVESA | 20

/
' COVESA

\\\ Accelerating the future of connected vehicles

%

Vi

A

Thank you

Contact & Information

IKUKSA KS"QA https://eclipse.github.io/kuksa.website/

4
I ETAS OSS manifesto @TAS https://www.etas.com/en/open-source-software.php
i
I Me 9 http://sdv.expert
I Eclipse SDV = https://sdv.eclipse.org

ICOVESA VSS @3 https://covesa.github.io/vehicle signal specification/

https://eclipse.github.io/kuksa.website/
https://www.etas.com/en/open-source-software.php
http://sdv.expert/
https://sdv.eclipse.org/
https://covesa.github.io/vehicle_signal_specification/

