
VSS Working Sessions

COVESA AMM

2023-10-12

| 1Copyright ©2022 COVESA13 September 2022 |

VSS Working Session

• Part 1
− Walk through and discussion of recently presented VSS

improvement areas
▪ Based on presentations from Ford and Blackberry

• Part 2
− VSS catalog evolvement

▪ What to add, what to remove, …
− VSS format and tooling

▪ What changes do we see as wanted/needed?
▪ What shall we NOT change

This is supposed to be an interactive session – please interrupt!

| 3

Typical workflow of a successful change to VSS

• Someone presents an idea

− Creates an issue in VSS Github explaining the idea or problem area

− Presents it at a VSS meeting

• We agree that the idea is good (or at least acceptable)

− First discussed in Github and VSS Meetings

− If needed also discussed/decided in DEG, TST, Board

• Someone volunteer to drive development

− Creates more detailed proposals, possibly including prototypes

− Propose time plan and acceptance criteria

− Implements and creates Pull Requests

• Pull Requests reviewed and discussed by VSS meetings

− When approved merged by VSS Maintainers (individuals with merge rights, typically
Erik/Adnan/Sebastian)

− Change included in next minor and/or major-release

| 4

VSS Type Representation

• VSS Today

− Type of a signal is implicitly given by a combination of
datatype/unit/min/max/allowed

− “Type” reuse only possible for structs

• Idea presented

− Define reusable properties

| 5

VSS Type Representation

• Pros/Cons

− Makes VSS model somewhat more complex

− Fits quite well into the type concept we already have for structs

− Could help keeping VSS standard catalog consistent

▪ Avoid that similar signals have different type/unit

▪ ”All temperature signals shall use TemperatureCelsius property!”

• Possible VSS Solutions

− Extend existing type/struct syntax for this purpose

− Convert existing signals to use properties

− Tools must be modified – Are two flavors needed, one that keep property intformation and one that
expand/replace property information to keep backward compatibility?

• Discussion – What is your opinion?

| 6

Tree vs Flat Structure

• VSS Today

− One Root

− Branches more or less used as namespaces

− No real distinction between classes and objects

• Ford Idea (our interpretation)

− No real requirement to have a tree

− We may have “hierarchical dot notated names” but not
necessarily

− It is up to the child to declare it’s father rather than
opposite

• Related comments

− We have previously got comments that VSS expanded
name are too long for some environments where
identifiers have a max length.

| 7

Tree vs Flat Structure continued

• Implications and Discussion Topics

− This would be a big change if performed in *.vspec files

▪ And if so, a good point in time to discuss if *.vspec shall be kept as source format

− Generating “old style” expanded Yaml/JSON from new format doable, if needed

− Even if we “scrap” branches – do we still some need some namespace mechanism and support
for relative addressing?

• Discussion – What is your opinion?

| 8

Instances

• VSS Today

− Instances defined on branch

− Syntax limited, basically enum and/or array

• Ford Idea (our interpretation)

− You define objects instead of specifying instances in the
class

− Arbitrary Identifier, not necessarily following VSS
“expanded names”

− Possibility to define static object data
▪ Like “LateralPosition” in image

• Related comments

− Some downstream projects like Eclipse Velocitas prefer to
work with unexpanded paths to allow methods like
“getHVAC(row,pos)”

| 9

Instances continued

• Implications and Discussion Topics

− Instances is common discussion point for VSS

− The current style forces us to have “default size” for number of
doors/seats/HVACs as you MUST specify instances at standard catalog level

− Current VSS solution has some possibility to add signals for a specific instance by
overlays specified by expanded name. Would require a different solution if using
this syntax (class inheritance to allow addition of signals?)

− Do we need a special mechanism to specify that “LateralPosition” is a “const
signal/attribute” of HVACStation, i.e. something that must be given when
instantiating, i.e. something that an SDK can use to find a matching HVAC
station?

• Discussion – What is your opinion?

| 10

Signal type

• VSS today

− Signals are specified as attribute, sensor or actuator

− These types are often confusing, as there may not be a
real sensor behind, the value may be calculated

− What a client can do may anyway be limited by access
rights

− But distinction may serve a purpose in deployments

▪ An actuator has both a current value and a wanted
value, sensor/attribute has only current value

| 11

Signal type - continued

• Implications and Discussion Topics

− Some distinction may be useful

− Example: Vehicle.Speed is never intended to be actuable (we think). Hood.IsOpen may
be it in some vehicles

▪ I.e. no value in that an API generate a “setTargetSpeed(float value)”

− Ontology guys sometimes differentiate between Observable Properties and Actuable
Properties

− Does anyone make a distinction between attribute and sensor in their
implementation?

• Discussion – What is your opinion?

| 12

Description/Definition

• Ford proposal

− Replace “description” with “definition”

• VSS Today

− No real definition exists on what should
be part of “description”

• Implications and Discussion Topics

− Is the purpose of the current
“description” and the intended
“definition that different?

− I.e. is just “definition” a better name, or
do we need both?

• Discussion – What is your opinion?

| 13

Permission Model

• VSS Today

− Does not specify anything, not even a syntax

• Implications and Discussion Topics

− Access rights can likely never be specified in VSS
standard catalog

− But we could specify “recommended methods” where
we define syntax allowing VSS models to be
annotated

− We could extend tooling to check for consistency

• Discussion – What is your opinion?

| 14

UUID

• VSS Today

− We have UUID based on path name, but method not well
described

− No method to use other UUID, a different UUID method or
to reuse old UUIDs and map UUIDs

• Implications and Discussion Topics

− What use cases do we intend to solve
▪ Short identifiers to reduce message length?
▪ Mapping signals with same content
▪ Identify changes compared to standard VSS or

compared to previous version

− Do we think one method would suffice?

− Or do we think it will be use-case dependent?

• Discussion – What is your opinion?

| 15

VSS Catalog evolvement – VSS History

• Focus on signals needed by “vehicle users”

− infotainment, apps

− Remote unlock, check fuel level, …

• QM only, i.e. not intended for safety critical features

− Primarily not intended for “zones”, at least not with a generic key-
value-based solution like KUKSA or VISS

• Shall be vehicle focused, but may be intended for both off-board/on-board
usage.

− Example: Vehicle color may be totally irrelevant to store on-board,
but is relevant in a vehicle database

• Aggregated data on fleet level is not within the scope of VSS

− Example: Average distance between accidents

• Even if VSS use the terms “actuator” and “sensor”, they do not necessarily
map to a physical sensor/actuator

− Actuator: Something where a user can set a target value
▪ Example: Vehicle.HVAC.Temperature

− Sensor: Something that typically varies over time, but a user cannot
set target value directly
▪ Example: Vehicle.Speed

| 16

VSS Catalog – Trends and Change Methodology

• Most low hanging fruit already picked, signals are becoming
more complex

− Just studying an individual signal is not enough, you
need to study some concept documentation

− Examples: PowerOptimize, WiperSystem

• Smaller non-controversial changes

− Just make a Pull Request

• Larger changes

− Create Issue/PR for discussion

− If needed, create a COVESA task group or project with
members interested in this topic:

| 17

VSS Catalog – Recent discussions - OBD

• VSS has an OBD branch which often triggers discussion

• Arguments Against

− VSS and VSS-implementations (like VISS, KUKSA) are likely not
feasible to provide data on the OBD-II interface due to
latency/frequency requirements

− Many signals in the branch are duplicates of similar signals in other
parts of the tree

− VSS shall not include 1:1 copies of other standards

• Arguments For

− OBD-tools are expensive, making data like Diagnostic Codes (DTC)
available over VSS could be useful for vehicle owners, so they can
view data in an App on their mobile phone

• One possible solution (which seems to be preferred/acceptable by many)

− Remove OBD-branch

− But first add relevant signals to other places in VSS Tree
▪ DTCs are frequently mentioned
▪ But are others of interest, like lambda sensor readings?

• Discussion – What is your opinion?

| 18

VSS Catalog – Other improvements Areas

• We recently had a PR addressing the “Driver branch”

− Fatigue, Attentiveness, Eyes on road, …

− That branch appears to not be that mature, and if there
are multiple parties interested this could be a
candidate for a task force/sub-project to identify
needed changes.

• Discussion – What other areas do you see where changes
would be beneficial?

− Any areas you would be interested in driving?

| 19

VSS Format and Tooling

• Current Python Tool-Chain

• Includes some variation points

− With/Without UUID

− Expansion of instances (or not)

*.vspec

(~Yaml)
#include

*.vspec

(~Yaml)

*.vspec

(~Yaml)

*.vspec

(~Yaml)

*.vspec

(~Yaml)

units.yaml

overlays.vspec

VSS-Tools

Syntax &

Semantic Check

Expand

Instances

types.vspec

JSON Exporter

CSV Exporter

…

…

Output

Artifacts

| 20

VSS Format and Tooling

• The use of *.vspec (basically Yaml with some extensions) as source format is sometimes
challenged

− Does not fit that well with “ontology” representation, or the representation
proposed by Ford

− Limited out of the box support, like schema definition

• Some ideas presented would require major changes to VSS, i.e. if we think that we need
some other source format now might be a good time to do it.

• We always strive to minimize amount of changes that are backward incompatible

− But we do not really know what all downstream projects use as input

− So difficult to say what the consequences would be

• Examples:

− Eclipse KUKSA use JSON generated by vss-tools as input. As long as we can generate
JSON that looks like today the actual VSS source format (today *.vspec) does not
matter

• Two major approaches to support more complex models

− Keep *.vspec as of today, annotate it if needed so that vss-tools can generate more
complex model, for example generating classes/objects/properties

▪ Drawback: Makes tooling more complex

− Replace *.vspec with “something else”. Derive *.vspec and/or current export results
(CSV, JSON, …) from it.

▪ Drawback: Completely new tooling required

• What is important for you concerning VSS Format and Tools?

	Bild 1: VSS Working Sessions
	Bild 2: VSS Working Session
	Bild 3: Typical workflow of a successful change to VSS
	Bild 4: VSS Type Representation
	Bild 5: VSS Type Representation
	Bild 6: Tree vs Flat Structure
	Bild 7: Tree vs Flat Structure continued
	Bild 8: Instances
	Bild 9: Instances continued
	Bild 10: Signal type
	Bild 11: Signal type - continued
	Bild 12: Description/Definition
	Bild 13: Permission Model
	Bild 14: UUID
	Bild 15: VSS Catalog evolvement – VSS History
	Bild 16: VSS Catalog – Trends and Change Methodology
	Bild 17: VSS Catalog – Recent discussions - OBD
	Bild 18: VSS Catalog – Other improvements Areas
	Bild 19: VSS Format and Tooling
	Bild 20: VSS Format and Tooling
	Bild 21

