Common Vehicle Interfaces

Working Session . COVESA

F EX tO/frO m u S e rVi Ces 21 '._ -."--.' Acceleratlng the future of connected vehicles

i WAV, Gothenburg, 17 April 2024 | .;‘ | } \M ‘ //1\
A T —— &

=T
Interface Exchange framework (IFEX) T 1R
. Yet another Interface Description Language (IDL) ? it

. A generic model for all Interface Descriptions !

. A set of tools to convert between existing |
- A more comprehensive view of interfaces t
. A stronger Error-handling description than

DL formats !
nrough layers |

nefore !

. Bridge between “standard” software technologies (non-
automotive) and significant automotive specific technologies

(AUTOSAR)

- ALL OF THE ABOVE

_COVESA

Background TR
Too many interface description languages and IPC/RPC technologies!

Create another “one to rule them all”? (yes it is ironic...)

STOP! The main point is not should we create, or avoid, yet another
Automotive-specific technology.

The IDL is not the (main) point - it is determining the semantic equivalences
and differences between existing technologies.

— To efficiently connect them, and flexibly swap one for another.

. COVESA

https://xkcd.com/927/

Conversions: N-to-N

Conversions: N-1-N

IFEX

N Y
’\1\‘_“‘ kS v

Why do IFEX? L

- .’\‘
N

R %
®
Q
/;» ,\\,!i\

o

e
-

'R Y
s ¢ ¢ ® » b
»

&

The IDL is not the point - it is determining the semantic equivalences and differences
between existing technologies.

— To efficiently connect them, and flexibly swap one for another.

The IFEX Project is a place to do the challenging semantic-mapping work

* While doing so, it creates translation tools between formats

* ...and it results in a simple but powerful interface description format
(because it is forced to include “all” features of the other alternatives)

(more importantly because it uses Layers, to separate individual concerns)

. COVESA

Refined view

IFEX

Not just an IDL.

- A common interface-description “model.
- A project to investigate, connect and unify interface
& communication technologies.

A generic interface model Namespaces s, o

AAT
k IFEX IDL * Can be nested /? \
(a a CO re) * Major & minor versions enables versioned APIs fr‘
. 1 ‘1
namespaces: Typedefs ’
name : / * Type defines native, defined, struct, or enumeration types
version: /- Supports array definitions
typedefs: / Enumerations
* Supports optional value specification for each element
enumerations: / Structs
7 * Can be nested
/° Elements can be of any native or defined datatype
structs:
] Methods
* Arbitrary number of input and output parameters
methods: /- Can return stream of output parameters
— | * Comprehensive Error definitions (composable)
properties: Properties
. /’/—° Observable data item. Get/Set/Publish/Subscribe
events:
Events
* Events can contain arbitrary number of elements
\ J
= . COVESA

* Defines names, types and generalized behavior
* “Pure interface” (functional view)

—no technical specifics
* Reusable definition across all technologies

Composable Layer Philosophy rocoren Pt)

IFEX CORE IDL

Reusable interface definition. Overlays

* Optionally augument/redefine of an existing interface def.
* E.g. COVESA standard interface + my own small change
* Protocol-specific errors layered on top of business-logic

OVERLAY (augument/redefine)

errors.
DEPLOYMENT LAYER

(technology-specific

Deployment Layer

Wi\

metadata) * Required details to deploy the general interface with a
CUSTOM LAYERS ;_pecn‘lc target enwro:_vment. -
(“anything”) arget e/?VIr?nment = programming angu.age,
communication protocol, deployment environment, etc.
Custom Layers
| * Defined by community (“standard”) or local (proprietary)

* Anything:

— — - Access control logic/rules

- Interface sensitivity (privacy / personal data?)

- Safety/Security specific handling?

- Classification according to OEM-internal nomenclature
- ... whatever is needed

Details and F-A-Q s

Q: Why not just select an existing IDL and put that in the middle of N-1-N? gt 2§l

Al: None of them have ALL the features of the others
A2: Few care about overall picture, compatibility with other choices

A3: None (*except Franca) have a strongly layered approach required to manage
complexity and IDL scope-creep.

o IFEX adopts this important concept and extends it

o Avoid deployment details and related meta-data to pollute the core IDL. Put those
details iIn composable layers

« => keeps the fundamental “interface-description” reusable

~ COVESA

Details and F-A-Q TR
Q: Isn’t it a lot of work to create code generators for the IFEX IDL? g £

A: Some work, yes. But we only write new what is necessary!

A: Reuse: Translating to an existing IDL means we can often use “their”code
generators. IFEX source - <IDL A> - [reuse existing tools for IDL A]!
In some areas, it is more a requirement (approved AUTOSAR tools need ARXML)

. __COVESA

"A/’J;‘: = ™
StatllS /:j“/ 77 .,... .%
R

Core IDL/model specification “v 1.0” complete (mid-2023)

- Mostly stable. Minor updates expected from now on (versioned!)

Implementations of several to/from technologies

Layer Type definition is continuous, as support for translations grow

~ COVESA

Status (2) T

F 2]
¢ o] e

Implementations and principles for IFEX tooling exists.

Python implementations - lightweight and easy to get into.
New tools can be developed following the existing patterns.
Existing support:

Translation into formats like DTDL, SDS-BAMM, Protobuf (gRPC),
AUTOSAR XML* (early stage) exists *not published yet

IFEX -> D-Bus -> C++ code generation chain

Translation gRPC -> IFEX implemented (a few features pending)
Analysis of OpenAPI

Others, prioritized on a need basis. T COVESA

Find out more T

This presentation does notcover many details about IFEX

The project has been active for a few years so many of
your concerns are known - but please ask and we will clarity/discuss

Read of the IFEX Core IDL

Ask IFEX developers for deeper discussions

. __COVESA

https://covesa.github.io/ifex/

Converting to change technology % R
Converting to, or via, IFEX //x\\
Intermediate format !
ARXML | ARXML2IFEX tool I IFEX2Protobuf | grRPC format
Layer (s}

* |FEX Project is where translations are analyzed/defined

* |FEX IDL/abstract-model can be used as an intermediate model

* Converting to IFEX (one single “rule them all” interface description format)

* OR:
Converting via IFEX, to what you need

. COVESA

Reuse the ecosystems that exist
(code generation)

C++/Go/Rust/..
Implementation

hvac.ifex > Ifex2proto_idl »l hvac.proto » ProtoC (standard tooling)

* Input could be something other than IFEX -> converting via IFEX
e Qutput could be any other supported format
* Leverage a huge amount of existing technologies

* WRITE “simple” translations between IDLs
REUSE “complex” output/code-generation/etc.

« Writing custom generators for IFEX only if and where it provides new value

| 16

Reuse the ecosystems that exist

(code generation)

hvac.ifex

Ifex2proto_idl

» hvac.proto

» ProtoC (standard tooling)

C++/Go/Rust/..
Implementation

* Input could be something other than IFEX -> converting via IFEX

e Qutput could be any other supported format

* Leverage a huge amount of existing technologies

* WRITE “simple” translations between IDLs

REUSE “complex” output/code-generation/etc.

« Writing custom generators for IFEX only if and where it provides new value

~ COVESA

uServices — Example of standard interface e W

uServices = Open-source interface proposals for common features
Described and published by General Motors.

Original described using Protobuf language (gRPC)
Investigation: Convert to IFEX for proof of concept and analysis

IFEX features and approach might be a better way™* to describe the fundamental
interface (discussion

*Reasons
- IFEX Core IDL is a richer language.
- Methods take multiple arguments instead of one single protobuf message (struct))
- Stronger Error description capabilities
- Layers with clearly named additional metadata instead of
overloading protobuf “option” feature)
- Layering generally gives more extension capability

Ref: Example Layer definitions for E2E, etc. -> LINK

. COVESA

SRR
uServices in IFEX TR
AR
Better explained using live Demo B0 b

... and viewing/discussing the result
Challenges and discussion areas:

- What are the protobuf options used for?
What is the underlying semantic “feature” we actually strive to describe with it?

- What are protobuf features such as “extends” or “reserved” good for in a RPC-style
interface description?
| think they are a results of protobuf’s original purpose: to describe an extensible data
serialization format. Do they serve a purpose in an RPC-style interface description?
Should IFEX (using a Layer) include similar features?

~ COVESA

BN\l

%“//ﬁ\\i\\

WAL S
AN C 0
7 4'_-':'.:.'.‘ Azceeeatng T Anate 31 conected \aticke

BN\l

%“//ﬁ\\i\\

WAL S
AN C 0
7 4'_-':'.:.'.‘ Azceeeatng T Anate 31 conected \aticke

BN\l

%“//ﬁ\\i\\

WAL S
AN C 0
7 4'_-':'.:.'.‘ Azceeeatng T Anate 31 conected \aticke

Wi

\\\ Accelerating the future of connected vehic

COVESA

les

