
Common Vehicle Interfaces
Working Session
IFEX to/from uServices

| 1COVESA AMM, Gothenburg, 17 April 2024

Interface Exchange framework (IFEX)

• Yet another Interface Description Language (IDL) ?
• A generic model for all Interface Descriptions !
• A set of tools to convert between existing IDL formats !
• A more comprehensive view of interfaces through layers !
• A stronger Error-handling description than before !
• Bridge between “standard” software technologies (non-

automotive) and significant automotive specific technologies
(AUTOSAR)

• ALL OF THE ABOVE

Background

l Too many interface description languages and IPC/RPC technologies!

l Create another “one to rule them all”? (yes it is ironic… "XKCD standards")

l STOP! The main point is not should we create, or avoid, yet another
Automotive-specific technology.

The IDL is not the (main) point - it is determining the semantic equivalences
and differences between existing technologies.

→ To efficiently connect them, and flexibly swap one for another.

l

https://xkcd.com/927/

Conversions: N-to-N
OpenAPI

ARXML

HTTP/REST/
OpenAPI

AsyncAPI

Franca IDL

Protobuf/
gRPC

Thrift

Other...

OpenAPI
HTTP/REST

Other...

ARXML

AsyncAPI

Franca IDL

Protobuf/
gRPC

Thrift

HTTP/REST/O
penAPI

Other...And so on...
(N times N)

Conversions: N-1-N
OpenAPI

ARXML

HTTP/REST/
OpenAPI

AsyncAPI

Franca IDL

Protobuf/
gRPC

Thrift

Other...

HTTP/REST/O
penAPI

Other...

ARXML

AsyncAPI

Franca IDL

Protobuf/
gRPC

Thrift

HTTP/REST/O
penAPI

Other...

+ Layers

(2 times N)

IFEX

Why do IFEX?

l
The IDL is not the point - it is determining the semantic equivalences and differences
between existing technologies.
→ To efficiently connect them, and flexibly swap one for another.

l The IFEX Project is a place to do the challenging semantic-mapping work

l * While doing so, it creates translation tools between formats

l * … and it results in a simple but powerful interface description format
(because it is forced to include “all” features of the other alternatives)
(more importantly because it uses Layers, to separate individual concerns)

l

l Not just an IDL.

o - A common interface-description “model.
- A project to investigate, connect and unify interface
& communication technologies.

OpenAPI

ARXML

HTTP/REST/OpenA
PI

AsyncAPI

Franca IDL

Protobuf/
gRPC

Thrift

Other...

ARXML

AsyncAPI

Franca IDL

Protobuf/
gRPC

Thrift

HTTP/REST/
OpenAPI

Other...

Deployment
Layers

IFEX

l Refined view

A generic interface model
(aka IFEX core IDL)

16/04/2024 | ALL MEMBER MEETING • Leipzig, Germany • Copyright ©2022 COVESA | 8

namespaces:
name: ...
version: ...

typedefs:
...

enumerations:
...

structs:
...

methods:
...

properties:
...

events:

Namespaces
• Can be nested
• Major & minor versions enables versioned APIs

Typedefs
• Type defines native, defined, struct, or enumeration types
• Supports array definitions

Enumerations
• Supports optional value specification for each element

Structs
• Can be nested
• Elements can be of any native or defined datatype

Methods
• Arbitrary number of input and output parameters
• Can return stream of output parameters
• Comprehensive Error definitions (composable)

Properties
• Observable data item. Get/Set/Publish/Subscribe

Events
• Events can contain arbitrary number of elements

Composable Layer Philosophy

16/04/2024 | ALL MEMBER MEETING • Leipzig, Germany • Copyright ©2022 COVESA | 9

IFEX CORE IDL
Reusable interface definition.

IFEX Core IDL
• Defines names, types and generalized behavior
• “Pure interface” (functional view)

– no technical specifics
• Reusable definition across all technologies

Overlays
• Optionally augument/redefine of an existing interface def.
• E.g. COVESA standard interface + my own small change
• Protocol-specific errors layered on top of business-logic

errors.

Deployment Layer
• Required details to deploy the general interface with a

specific target environment.
• Target environment = programming language,

communication protocol, deployment environment, etc.

Custom Layers
• Defined by community (“standard”) or local (proprietary)
• Anything:

- Access control logic/rules
- Interface sensitivity (privacy / personal data?)
- Safety/Security specific handling?
- Classification according to OEM-internal nomenclature
- … whatever is needed

OVERLAY (augument/redefine)

DEPLOYMENT LAYER
(technology-specific
metadata)

CUSTOM LAYERS
(“anything”)

CUSTOM LAYERS
(“anything”)

Details and F-A-Q

l Q: Why not just select an existing IDL and put that in the middle of N-1-N?

l A1: None of them have ALL the features of the others

l A2: Few care about overall picture, compatibility with other choices

l A3: None (*except Franca) have a strongly layered approach required to manage
complexity and IDL scope-creep.

l IFEX adopts this important concept and extends it

l Avoid deployment details and related meta-data to pollute the core IDL. Put those
details in composable layers

l => keeps the fundamental “interface-description” reusable

Details and F-A-Q

l Q: Isn’t it a lot of work to create code generators for the IFEX IDL?

l A: Some work, yes. But we only write new what is necessary!

l A: Reuse: Translating to an existing IDL means we can often use “their” code
generators. IFEX source → <IDL A> → [reuse existing tools for IDL A]!
In some areas, it is more a requirement (approved AUTOSAR tools need ARXML)

Status
l

Core IDL/model specification “v 1.0” complete (mid-2023)

l → Mostly stable. Minor updates expected from now on (versioned!)

Implementations of several to/from technologies

Layer Type definition is continuous, as support for translations grow

Status (2)

l Implementations and principles for IFEX tooling exists.

l Python implementations – lightweight and easy to get into.

l New tools can be developed following the existing patterns.

l Existing support:

l Translation into formats like DTDL, SDS-BAMM, Protobuf (gRPC),
AUTOSAR XML* (early stage) exists *not published yet

l IFEX -> D-Bus -> C++ code generation chain

l Translation gRPC -> IFEX implemented (a few features pending)
Analysis of OpenAPI
Others, prioritized on a need basis.

Find out more

This presentation does not cover many details about IFEX

The project has been active for a few years so many of
your concerns are known – but please ask and we will clarify/discuss

Read the specification of the IFEX Core IDL

Ask IFEX developers for deeper discussions

https://covesa.github.io/ifex/

• IFEX Project is where translations are analyzed/defined

• IFEX IDL/abstract-model can be used as an intermediate model

• Converting to IFEX (one single “rule them all” interface description format)

• OR:
Converting via IFEX, to what you need

Converting to change technology
Converting to, or via, IFEX

ARXML ARXML2IFEX tool IFEX
CoreIDL IFEX2Protobuf gRPC format

Layer(s)

Intermediate format

Reuse the ecosystems that exist
(code generation)

17/04/2024 | ALL MEMBER MEETING • Leipzig, Germany • Copyright ©2022 COVESA | 16

• Input could be something other than IFEX -> converting via IFEX

• Output could be any other supported format

• Leverage a huge amount of existing technologies

• WRITE “simple” translations between IDLs
REUSE “complex” output/code-generation/etc.

• Writing custom generators for IFEX only if and where it provides new value

hvac.ifex Ifex2proto_idl hvac.proto ProtoC (standard tooling) C++/Go/Rust/…
Implementation

• Input could be something other than IFEX -> converting via IFEX

• Output could be any other supported format

• Leverage a huge amount of existing technologies

• WRITE “simple” translations between IDLs
REUSE “complex” output/code-generation/etc.

• Writing custom generators for IFEX only if and where it provides new value

Reuse the ecosystems that exist
(code generation)

hvac.ifex Ifex2proto_idl hvac.proto ProtoC (standard tooling) C++/Go/Rust/…
Implementation

uServices – Example of standard interface

uServices = Open-source interface proposals for common features
Described and published by General Motors.

Original described using Protobuf language (gRPC)

Investigation: Convert to IFEX for proof of concept and analysis

IFEX features and approach might be a better way* to describe the fundamental
interface (discussion)

*Reasons
- IFEX Core IDL is a richer language.

- Methods take multiple arguments instead of one single protobuf message (struct))
- Stronger Error description capabilities
- Layers with clearly named additional metadata instead of

overloading protobuf “option” feature)
- Layering generally gives more extension capability

Ref: Example Layer definitions for E2E, etc. -> LINK

uServices in IFEX

Better explained using live Demo
… and viewing/discussing the result

Challenges and discussion areas:

- What are the protobuf options used for?
What is the underlying semantic “feature” we actually strive to describe with it?

- What are protobuf features such as “extends” or “reserved” good for in a RPC-style
interface description?
I think they are a results of protobuf’s original purpose: to describe an extensible data
serialization format. Do they serve a purpose in an RPC-style interface description?
Should IFEX (using a Layer) include similar features?

