Why are we so bad at
software development?
And how can we fix it?

V O L vV O

What are we talking about today

Culture

Our values, beliefs,
and behaviors that
define how we
interact with each
other

Strategy

Our organization,
processes, plans, and
tools we use to
complete a project

Execution

Our daily project
management with
scheduling, resource
planning, tracking,
and reporting

Outcome

The project result
with deliverables,
quality, and time &
budget outcome

V O L vV O

Three engineering domains shaped by the process

SPECIFICATIONS FEATURES E PRODUCT

Documentation and Functionality providing Software developed with
artifacts defining what and customer value as a part of multiple planned releases
hoyv software should be a larger solution Life cycle managed

built Feeds into a larger solution separately from carlines

Include requirements,
specifications, and tests

V O L vV O

Culture that sets the foundation

Isolated specification management
« Requirements and system specifications are created in isolation from dev teams

- Seen as static foundation of all development work

Siloed Features
- Feature specified, planned, and tracked in isolation

- Lack of cross-feature integration & harmonization -> Conway’s law

Carlines’ needs dominates
E - Long-term reuse is sacrificed to meet start of production

« Product mindset seen as risk for start of production

Culture

V O L vV O

Strategies that shape project environments

Lack of design refinement process
SP - ASPICE SWE.1-6 iterated over only once

\
Leads to immature Big Design Up Front (BDUF) S SWE.6
Requirement Quality
Analysis Test
T . \ /
Lack of feature prioritization Mo e
« Overloaded dev teams trying to deliver to Architecture Integration
multiple function owners Design \ y & Test
SWE.3 SWE.4
Detailed Design Unit

No software product KPlIs , —
& Implementation Verification

E - No incentive for ROl after start of production \/

Software org gets treated as scale-out partner

Strategy
|

V O L vV O

Chaotic projects

No definition of done
« Lack of atomic, testable requirements

No traceability between artifacts

Panic descoping
- Feature are dropped when they are almost done.

No planning beyond Start of Production

E - Focus on feature completion
No protected long-term development

Execution
1

’, '//y \ ’
etion leac

Outcome

V O L vV O

Conclusion
Culture Strategy Execution Outcome
Specifications « Static specs e Immature BDUF o No definition of done
e Delays
Features e Siloed features e No prioritization « Panic descoping » Delivery risk

Reactive mgmt
Burnout

Product Carline centric o No product incentives e SOP obsession

V O L vV O

Core Engineering Principles

Be sympathetic to the needs of others

- Mechatronics have different requirements than software

Trust your colleagues

- There are several different paths to your common goals

Balance the now with the future

- Start of production is important, but so is the time after

Culture Strategy Execution Outcome
&, ¥ N |

V O L vV O

Change the culture to embrace core principles

Assimilate agile iterations into engineering mindset

- Embrace that specification evolves with implementation

- Add feature maturity metrics to dashboard and progress reports

Have solutions drive features
- See features as a value-adding part of a greater solution

+ The solution objectives & requirements drives feature prioritization

Decouple from carlines
E - View software product as pre-fabricated deliverables to be integrated into the car

Culture

V O L vV O

Express culture through changed strategies

Implement incremental spec evolution process
- Iterate often across all ASPICE SWE steps

Fewer stable features > More unstable features
 Specify a solution MVP that can ship once stable

Decouple from carlines
E « Product team delivers releases to carline integration team

- Separate software product funding from that of integration projects

Strategy
|

V O L vV O

Leverage strategy to execute distinct, measurable projects

Go API First

- Separate API versioning from that of implementation

« API, Implementation, build, test — Manage separately

Have a machine-executable definition of done
- Start with feature mockup delivered by architecture team

- Tie maturity metrics to API-, code-, and test velocity

Decouple from carlines

E « Product delivers releases to integration teams, who delivers to carlines

« Product has support inside integration team

Execution
1

V O L vV O

We can all be here

MVP delivered on time |leads to...
left-shifted integration

left-shifted design issues
space for tech debt management

efficient development culture

V O L vV O

COVESA’s role

Enable best software culture, strategies, and execution
- Provide an anti trust-proof forum for collaboration
- Create tooling that enables API-First principles

- Standardize on/off-board vehicle services

- Facilitate reference vehicle service implementations

Culture Strategy Execution Outcome

L. _;§ . _§.]
14

VvV O L VvV O

Thank you

