
CCS Reference Architecture - Work Breakdown Structure
Implementation roadmap

milestone 1 - Spring (4-7 May 2021)GENIVI Virtual Tech Summit
milestone 2 - internal milestone (early Q3 - mid-July)
milestone 3 - Fall All Member Meeting (Virtual ?) October ?
milestone 4 - January 2022 – (planned for CES ?)

Communication framework architecture

This page lists the different components and tasks to be completed for the architecture discussed on the page. The table Vehicle data exchange protocols
references to the following diagram, with components that are considered in scope for the PoC highlighted with green color.

Components

Vehicle

https://www.eventleaf.com/geniviVTS
https://wiki.covesa.global/display/WIK4/Vehicle+data+exchange+protocols

Definitions:

StateStorage and VSSFeeder is expected to be combined into one component in the implementation.

SignalStoreIF : Done by reading/writing database transactions, and using the notification feature to notify components that update occurred.sqlite
StateStorage: Essentially implemented by instancesqlite
SignalFeedIF: This is an internal implementation detail now since StateStorage/VSSFeeder is essentially one program

 OEM Cloud

ValueStoreIF: ?
ValueQueryIF: ?

Interface details

(OEM Cloud) GraphQLDatabaseIF: (Interface between VSS2-Database Resource Mgmt (GraphQL
server)

The interface is expected to be accessing the database itself. In order to give the GraphQL server full freedom to query data intelligently, it should connect
directly to the SQL database.

Description of work

Apache License is more preferred by participants.

Component Plan / Activities Status of chosen software
components
(Implementation details of PoC)

Alt. SW components / Implementation for
Production Systems

 (WIP, future)

Owner

1 In-vehicle
State storage
(laptop
simulator)

Custom code + in-memory database (+
persistence) + connection to feeder
Either locally cached during uptime of
system or
Stored and indexed in a database to
allow access to historical data

Selection of database
Implementation of database
schema

 - CCS-106 Develop in-vehicle state

 storage DONE

Custom control code (Python or
C++)
+ binding, OK for PoCsqlite

 Implemented by a shared sqlite
database file. The "API" is simply
interacting with the database using SQL
statements and/or sqlite bindings.

Note: statestorage executable in a one-shot
thing that sets up the database. The gen2-
server accesses the actual database
directly using sqlite binding.

 - CCS-107 Develop proof-of-
 concept version of in-vehicle storage

DONE

Custom code

 - CCS-108 Develop production-grade version

 of in-vehicle storage DONE

Keith

 - CCS-109 Reach out
Kuksa project for in-vehicle

 state storage components
DONE

https://jira.covesa.global/browse/CCS-106
https://jira.covesa.global/browse/CCS-107
https://jira.covesa.global/browse/CCS-108
https://jira.covesa.global/browse/CCS-109

2 In-vehicle

VSS2
translation (a.k.
a. VSS feeder)
(laptop
simulator)

Implementation of SOME/IP client?
or simple simulator
or Vehicle Driving Simulator
(LG? OpenDS? or GENIVI GitHub
version?)

= set up simulator, make it drive
around track, get list of available
signals, write code to convert
signals to VSS...
Signals are fed over DDS to
AutoWare or Apollo autonomous
driving stacks.
Sim needs a high-end graphics
machine

Look if or should play a partVSI VSD
New: live_simulator which is feeding a
real-time playback of existing
timestamped data.
Implement CAN + VSS translation
support (e.g. reuse from Bosch code
project)

 - CCS-110 Develop In-vehicle VSS2
 translation (a.k.a. VSS feeder)

IN PROGRESS

 implemented by live-simulator
Ulf feeds data taken from an
existing "ovds" database and feeds
it into statestorage.
Example ovds database to feed live
simulator now exists.

Additional options:

Custom code, feeding simple
simulated data

 Implement CAN + VSS
translation support (e.g. reuse from
Bosch code project)
Then (future) run full vehicle driving
simulator

 continue driving-simulator track
and "playback" simulator in parallel.

 - CCS-111 Develop proof-of-
concept version of in-vehicle VSS2

 translation IN PROGRESS

not assigned

 - CCS-112 Reach out
Kuksa project for in-vehicle
VSS2 translation / VSS feeder

 components DONE

 - CCS-149 Analyze how
to run a driving simulator to

 generate vehicle data
IN PROGRESS

3 In-vehicle

Data Package

Collecting VSS2 data into snapshots and
bundles according to Data serialization /
value formats
Presenting data packages to the Data
server
Possibly closely related to the State
storage schema

 - CCS-113 Develop in-vehicle data

 packaging DONE

Start with results of Apache NiFi track
 (no resource / no to fulfil this need.

concrete plan for NiFi at the moment)

 No recent progress

 - CCS-114 Develop proof-of-
concept version of in-vehicle data

 packaging TO DO

 VISS specification defines how to fetch "historical"
collected data.

 VISS server W3C_VehicleSignalInterfaceImpl imple
mentation will record data (if an interface is triggered
from the vehicle, use case is "going out of mobile
service area"). Also, the messages for fetching data
(according to VISS) is implemented.

 - CCS-115 Develop production-grade version

 of in-vehicle data packaging TO DO

Gunnar Ulf

4 In-vehicle

Data server
(laptop
simulator)

Data server implementation for W3C
Gen2

Reference implementation exists
in GitHub MEAE-GOT
Ulf can work together with
someone how to connect to an
existing API of "state storage"
(also talk to Kuksa project -
VISS+REST server)

 - CCS-116 Develop in-vehicle data

 server TO DO

Use server directory from W3C_VehicleSign
alInterfaceImpl

 - CCS-117 Develop proof-of-
 concept version of in-vehicle data server

DONE

Gen2 implementation now uses ovds.db
file.

 On-demand requests are fetched from
database.
Timed subscriptions are also supported, i.e.
send updates at regular intervals.

 There is not yet implementation of a
trigger to the gen 2 server from the
database when a new value is written
(SQLite supports trigger in theory).

Ulf

 - CCS-154 Reach out
Kuksa project for in-vehicle

 data server components
DONE

5 OEM Cloud

Vehicle client

W3C Gen2 protocol (VISS Websocket
Pub/Sub)
Options:

Ulf wrote the client using Go-lang,
stored in MEAE-GOT/W3C.
Sanjeev involved in writing a client
using Javascript.
Curl script
Custom code + HTTP library (e.g.
written in python) custom code +
libcurl binding
No clear answer. Depends on
use-case. What is the rate of data
for example?

This program shall also store the data
into the data lake program (or directly
into the database used as data lake)

 - CCS-118 Develop OEM cloud vehicle

 client TO DO

Written in Go, some similar code as in W3C
Gen 2 reference server

 - CCS-119 Develop proof-of-
concept version of OEM cloud vehicle

 client DONE

 Demo includes this function
already.. In .ccs-client repo
Client reads data from data server in
vehicle via the VISSv2 protocol, and writes
it into the OVDS database.

 Vehicle client can be set to either to
HTTP Get or WebSocket subscription
feature.

 - CCS-120 Develop production-grade version

 of OEM cloud vehicle client TO DO

Ulf

https://github.com/genivi/vehicle_signal_interface
https://github.com/PDXostc/vehicle_signal_distribution
https://jira.covesa.global/browse/CCS-110
https://github.com/GENIVI/ccs-w3c-client/tree/master/livesim
https://jira.covesa.global/browse/CCS-111
https://jira.covesa.global/browse/CCS-112
https://jira.covesa.global/browse/CCS-149
https://wiki.covesa.global/pages/viewpage.action?pageId=12124406
https://wiki.covesa.global/pages/viewpage.action?pageId=12124406
https://jira.covesa.global/browse/CCS-113
https://jira.covesa.global/browse/CCS-114
https://github.com/MEAE-GOT/W3C_VehicleSignalInterfaceImpl/tree/master/server
https://jira.covesa.global/browse/CCS-115
https://jira.covesa.global/browse/CCS-116
https://github.com/MEAE-GOT/W3C_VehicleSignalInterfaceImpl/tree/master/server
https://github.com/MEAE-GOT/W3C_VehicleSignalInterfaceImpl/tree/master/server
https://jira.covesa.global/browse/CCS-117
https://jira.covesa.global/browse/CCS-154
https://jira.covesa.global/browse/CCS-118
https://jira.covesa.global/browse/CCS-119
https://github.com/GENIVI/ccs-w3c-client
https://jira.covesa.global/browse/CCS-120

6 OEM Cloud

VSS2 database

Selection of libraries and database
Define database schema Start
with Ulf's proposal for DB schema

 - CCS-121 Develop OEM cloud VSS2

 database DONE

Postgres was discussed.
Use SQLite first.

Currently the translation path to
UUID. Translation is in a separate database,
compared to the signal database. A future
possibility is two tables in a single database,
making it possible to use SQL JOIN statements.

 now using Path as ID. This also simplifies
supporting multiple VSS versions (where paths
might differ) at the same time.

Custom control code (Python or
C++) implemented in Go.
+ Sqlite binding, OK for PoC, or
other database such as postgresql.

Need to define database
schema first proposal is here

 - CCS-122 Develop proof-of-
concept version of OEM cloud VSS2

 database DONE

 Implemented in In .ccs-client repo
This is the OVDS server.
It exposes a REST protocol that is used by
the client. which may be easier since it is a
single operation and not having to look into
both databases. (See JOIN idea on the left
for alternative).
REST protocol can also deliver full time
series.

 Should we split up the software into
more logical repositories? Agreed, but not
as urgent.

In production more likely to be an object store database
instead of a RDBS.

Sanjeev looking at Apache ecosystem and Hortonworks
/Cloudera platform capabilities.

 - CCS-124 Investigate Apache NiFi/Spark and

 other technologies for data architecture DONE

Ulf

 - CCS-125 Reach out
Geotab to learn the Geotab

 platform capabilities DONE

7 OEM Cloud

Identity
management

Implementation of end-user login and
authentication using OpenID

Lots of candidates. Responsible
implementer should propose a
good alternative.

 - CCS-126 Develop OEM cloud identity

 management TO DO

 TODO
Later. (Programming language / technology
preference could be influenced by the
programmer)

--

8 OEM Cloud

Access
management

Implementation of authorization between
end-user and 3rd party application or
Neutral Server using OAuth2
Iyyaz points to the following code

https://www.ory.sh/hydra/ taken
from https://oauth.net/code/

 - CCS-127 Develop OEM cloud

 access management IN PROGRESS

 TODO

Later. (Programming language /
technology preference could be influenced
by the programmer)

--

9 OEM Cloud

Resource
Management
 = Data server
API

Implementation of basic API management
Resource Mgmt is the ExVe naming.
Implementation of a GraphQL API using
the VSS2 schema
Interface to the client, is of course
defined by GraphQL+schema.
Interface to database
(GraphQLDatabaseIF) is described above

 - CCS-128 Develop OEM cloud
 resource management (= Data server API)

TO DO

GraphQL Apache Apollo?

 - CCS-129 Develop proof-of-
 concept version of OEM cloud data API

DONE

Located in vss-graphql repo

 Has one schema.

 Proposal (PR in vss-tools) for
GraphQL schema generator now
exists.

 Has Apollo server in docker

 Needs to implement the TODO
connection from GraphQL (Apollo)
to database.
It could use the REST protocol of
the OVDS server, or directly SQLite
database.
^^ Important to fix!!! ^^

(Alexander Domin)

 - CCS-130 Reach out to
 BMW for the GraphQL example

DONE

JIRA TODO: Implement the
connection between GraphQL and
OVDS database.

https://jira.covesa.global/browse/CCS-121
https://docs.google.com/presentation/d/1msdvGlzzNgJGOjvk3kLLGMR5ctDMwdI2M5gqw12zHi0/edit#slide=id.g7f7e5f68ff_0_26
https://jira.covesa.global/browse/CCS-122
https://github.com/GENIVI/ccs-w3c-client
https://jira.covesa.global/browse/CCS-124
https://jira.covesa.global/browse/CCS-125
https://jira.covesa.global/browse/CCS-126
https://www.ory.sh/hydra/
https://oauth.net/code/
https://jira.covesa.global/browse/CCS-127
https://jira.covesa.global/browse/CCS-128
https://jira.covesa.global/browse/CCS-129
https://github.com/GENIVI/vss-graphql
https://jira.covesa.global/browse/CCS-130

10 Neutral Server

Data
Marketplace

Separate instance that consumes the
OEM Cloud OAuth2 and GraphQL APIs

We could implement a very
simplistic neutral server using the
published API of High Mobility, but
an open implementation.
Security, consent and other
complicates things. Leave those
details out.

 - CCS-131 Develop neutral server

 market place TO DO

 - CCS-132 Develop proof-of-
concept version of neutral server market

 place TO DO

In vss-graphql-client-swift repository

 Has programming framework/example
(in SWIFT) to access data via graphql.

This could show a way for 3rd party
applications to access the OEM
/GraphQL interface directly but
possibly a more limited REST-API is
more realistic for 3rd part app access

 : Expose a neutral-server API to TODO
third party applications.

Nothing in particular to develop It would
just be a proxy (for the GraphQL and/or
REST) – same technologies as our current
OEM connection would be used by the
Neutral Server.

The API would be quite transparent if VSS
is exposed directly, but the Neutral Server

 API might expose different functions also.

But enriched functions / anonymized
aggregated data might be provided by
Neutral Server.

Kevin

11 3rd Party
Application Example applications exist on High

Mobility's GitHub
One instance that consumes the Neutral
Server/Data Marketplace APIs

Use an example application from
HM
For example an app that just
shows the data (written in Node.js)

One instance that consumes the OEM
Cloud OAuth2 and GraphQL APIs

Modify the application to use the
OEM API directly

 - CCS-133 Develop 3rd party application
IN PROGRESS

 - CCS-134 Develop proof-of-
 concept version of 3rd party application

DONE

 New sample app
Connecting directly to OEM cloud for now,
via GraphQL.

For connecting to Neutral server instead:

Example/standard API work needed.
The example apps are using High
Mobility's API. See above

 See above, it is first required to define
Neutral Server API.

Kevin

previously captured notes on AWS. See for more up to date presentation by Kevin.2021-May AMM presentation

Cloud Infrastructure Tools (for production-grade design proposals)

AWS tools – which of these might be useful?

Lambda = "serverless" tasks
Greengrass – edge/device platform
Greengrass core = data processing software components
Greengrass converters – are these useful for data conversion (VSS)
Greengrass general = runtime platform, SOTA, etc.

 package VISS Data Server and Statestorage into
Timestream – time series database, is it an alternative to Influx?

Executes with serverless approach (with some kind of persistent storage behind of course)
Kinesis Datastreams – data stream transfer, is it an alternative to Apache NiFi?
Kinesis Firehose – capture and modify data, is it similar to Apache Spark?
RDS – Relational DB service
DynamoDB – key/value DB

https://jira.covesa.global/browse/CCS-131
https://jira.covesa.global/browse/CCS-132
https://github.com/highmobility/vss-graphql-client-swift
https://jira.covesa.global/browse/CCS-133
https://jira.covesa.global/browse/CCS-134
https://wiki.covesa.global/display/WIK4/GENIVI+Virtual+Member+Meeting+May+2021

	CCS Reference Architecture - Work Breakdown Structure

