
1.
a.

2.
a.

3.

a.

b.

Data serialization / value formats

What is it and why?

The defines what data "entities" (Signals and Attributes) we can deal with, and are used in the protocol(s) defined by W3C Automotive VSS Taxonomy
Working group, as well as other initiatives and the vehicle.inside outside

But in addition to , we need to define the data-exchange formats for of those Signals. This starts by defining terms, but VSS itself measured values
quickly develops into defining one or several variants of the actual message content format, whether in JSON or other.

Relationship to Protocols

Data formats sometimes overlap protocol definitions because some protocols (but not all) define the data format in its specification. is VISS / W3C Gen2
an example of a protocol definition that defines both the protocol interactions between client and server, and the data exchange format that fits the VSS
model. Ultimately, any chosen (stack of) protocols must at some point define the transferred data formats, otherwise no understandable exchange can be
had, and this page is intended to support the development of such a definition.

Looking at a wider set of protocols it is clear that we have some more work remaining.

The data exchange protocols we discuss fall into , each requiring some more work on defining value exchange data formats:different categories

A protocol does not (yet) cover all variations of data exchange.
 When this page was written, supported subscription to updates and on-demand fetching of the current value of W3C VISS protocol (v2)
one or several, specified signals in one go. In its latest form it has a significant number of query parameters and filters, and supports the
fetching of a series of historical recorded values (i.e. TimeSeries according to the definitions below). VISS v2 now specifies features that
mirror most of the types of messages listed here, with the exception of Snapshots.

A protocol defines only a "transport"
We often discuss protocols that define some behavior of data transfer, such as pub/sub semantics, but they are designed to be generic
and therefore support type of information to be transferred by the protocol. This means they do not (can not) define the format of the any
content of the data container (payload). Such transport protocols are set up to transfer any arbitrary sequence of bytes. This makes
those technologies widely applicable, but selecting them is not enough without also defining the payload format. Examples of some such
protocols would be or , but the principle extends to generic protocols and frameworks.MQTT WAMP many

A protocol defines transport, query semantics, and even a few expectations for the exchanged data format, but is still generic and
requires additional definitions to become unambiguous for a particular case.

Example: GraphQL is a generic technology that clarifies a bit more about expected data semantics and formats but it still requires a
schema to be defined to indicate the exact underlying data model, what types of queries can be made using the GraphQL language, and
other details such as the datatypes that are expected to be returned. A schema must be defined for GraphQL, and for other similar
situations, and that schema might also be derived from this generic analysis.
Example 2: To consume and process data in Apache Spark, Kafka and presumably for many other generic data-handling frameworks
we also need to define schemas that define the format and content of the transferred data, in a similar fashion. These protocols might
also match category 2/3.

Related references

MF4/MD4 data format
A C++ implementation

Definitions
(proposal, open for discussion)

Signal:

An observable single piece of data in a Data Taxonomy, defined by its unique identifier
In practice we here mean the absolute path of a leaf-node in a VSS taxonomy

Request:

A request to deliver a measurement or measurements, as according to the chosen communication protocol.
For example an instance of GET in VISS/W3C Gen2, or a Query in GraphQL.
This is assumed to request a set of data that has already been measured, (or if it is an instantaneous value, a value that is measured on-demand
and delivered instantly).

Job:

A request to make measurements, typically some time in the future.

https://genivi.github.io/vehicle_signal_specification/introduction/taxonomy/
https://wiki.covesa.global/display/MIG/External+Data+Server+Proof-Of-Concept+-+Work+Breakdown+Structure
https://wiki.covesa.global/display/WIK4/CCS+Reference+Architecture+-+Work+Breakdown+Structure
https://genivi.github.io/vehicle_signal_specification/
https://w3c.github.io/automotive/
https://w3c.github.io/automotive/
https://mqtt.org
https://wamp-proto.org/
https://www.csselectronics.com/pages/mf4-mdf4-measurement-data-format
https://www.turbolab.de/mdf_libf.htm

Unlike Request, which asks for , a Job definition is used to instruct a system to perform a measurement or several measurements Data Delivery
over time, at some time in the future.
A Job does not deliver data until it is requested.
A Job may include conditions such as a time-period, but in advanced systems also other logical conditions that should be fulfilled for the job to
execute.
TODO: Compare SENSORIS work on this.

 This page is currently concerned with the payload, and not a full protocol definition, so no further definition of or is made here.Request Job

Observation:

The act of making a measurement, a.k.a. to record one or several for a particular named data item.values

Data Package:

= A delivery of data sent at a particular time.

(think of it as the whole Message that is in response to a Request)

This will likely need to include some metadata regarding the request:

Vehicle identity – should this be special or is just a measurement on a VSS attribute. For example VIN number is already defined in
VSS. Presumably it could be just a VSS defined data item?

Depending on the specific implementation of this concept this might be an "anonymous" ID instead of one that can identify a vehicle or
person.

Job ID (when applicable)
Sequence number (if partial delivery of a Job)
The values container itself (type , , or single) Snapshot Bundle Record

Additional Metadata

Following input given in the :W3C data TF

Observation metadata
Sampling/Compression methods
Transmission method
Consent requirements
Retention time

Signal metadata
Sensitivity
Quality
Unit

Record:

A container to represent one single measured data value
Subtypes indicate which Signal has been measured. (Record Types)
Records are used to represent data with associated metadata, which are different depending on the Record Type, as needed for different cases
Example of possible record types:

Just the value.
The value plus a timestamp
The value plus a timestamp plus a timestamp accuracy information
The value plus additional qualitative information
The value plus a timestamp plus the location (e.g. GNSS position) where a measurement was performed.

All of the above may also specify the signal name, or not: Some record types may need to specify the signal it is referring to, but others might
not, because the record is delivered in a context where it is known which signal is being measured.

 Why not just use a single record type (superset of all functionality)?

A: The reason would be to optimize the performance and bandwidth. In other words, don't transfer what is not needed for a certain case. If a timestamp is
not needed, we should make sure we support transferring data without providing a timestamp, for example. Hence, this proposes a simple class hierarchy
of sub-types of Record.

Record Subtypes:

 PlainRecord there is no need to differentiate it from Record unless we want the top parent type (Record) to be "abstract" and only allow
subtypes be concrete types.
As far as I can see there is nothing to gain from that. So we can consider Record to be a concrete parent type and Record == Plain Record

https://www.w3.org/community/autowebplatform/wiki/Data_tf

TimeStampedRecord
ToleranceTimeStampedRecord, ... ?

+ Record types which specify the signal name inside:

SpecifiedRecord
SpecifiedTimeStampedRecord, etc.

Record types which specify the geospatial position in addition to the time value:

GeospatialRecord
SpecifiedGeospatialRecord

(N.B. In this proposal, Geospatial records always include a time stamp, because it seems to be the overwhelmingly dominant usage, but variations without
time stamp would of course be possible)

DerivedRecord and StatisticsRecord

This is a record type that does not deliver the original data but something that is calculated from it.
These are needed only if the "derived" signal is not already listed in the VSS signal database. In other words, it is perfectly possible to use VSS
to define some derived or statistical value already, by giving it a name and definition in the data catalog/schema. A normal request for that VSS
signal would then deliver the value in a normal record, and there is no need to define in the value-measurement protocols how this value is
calculated since it is declared in the VSS description or simply decided by the system that delivers it.
Here is one example of this already listed in VSS today: It has the description "Average speed for the current Vehicle.AverageSpeed.
trip". You could imagine defining another signal named for example and just fetch it as a normal Record.Vehicle.Speed.MonthlyAverage,
... but if the VSS catalog does not give a name to the derived or statistics calculation, then this can be done by defining new message types.
A VSS signal has a single description so its meaning is well defined and not changing. A type such as statistical record DerivedRecord
complements this since it can have modifiable parameters, such as over which time period is the measurement done.
Subtypes of DerivedRecord are and maybe some others (e.g. mathematical function / curve matching?)StatisticsRecord
Further Subtypes of : , , , , , and so on.StatisticsRecord Average Median Max Min Histogram
(Additional refinement possible here)

Overview

TimeStamp

NOTE: The exact format of time stamps (and any other data representation) may differ when these concepts are translated to different protocols or
languages, as long as the original meaning as required by the VSS specification remains.

1. Text Format

One option is to use a string and it is then recommended to use the ISO 8601 standard format, with fractional seconds (e.g. microseconds) and always
UTC (Zulu) time zone.

Real, "Wall clock time"

 "ts" : "2020-01-10T02:59:43.492750Z # Zulu time, ISO std with microseconds

Relative to a previously predefined time stamp reference:

"rts" : "T02:59:43.100044" # Similar to ISO 8610. Years/month/dates can be omitted if zero
"rts" : "02:59:43.100044" # Alternative, also OK
"rts2", "rts3", ... # If more than one relative time stamp reference had been previously agreed

Binary format

For some purposes more efficient binary encodings should be considered, such as an integer of appropriate size, usually containing fractions of seconds
relative to a known starting point.

Bundle

A collection of several records, transferred together.
On this page, two subtypes are defined: and .TimeSeries Snapshot

TimeSeries

Several measured values, , taken over a period of time.of the same signal
A TimeSeries contains time stamp for each value
A TimeSeries is a collection of Records

Snapshot:

Several measured values, , that have a relationship to each other because they were measured "at the same time".of different signals
 Due to potential time sync limitations or timestamp inaccuracy, this concept of "at the same time" could be defined as a time range of a chosen

length)
A snapshot is built up of several Records, and additional information
A might define beforehand, which different signals shall be grouped into the Snapshot instances.Job
A can be seen as a generalisation of the concept used in automotive diagnostics.Snapshot "Freeze Frame"

Side note: Freeze Frames are sometimes delivered as an opaque data dump that can only be interpreted by those who know the internal
structure (and this binary-blob could then be transferred within a single VSS signal definition) but we are here proposing an
understandable and readable format for It is implied by the example, that this is achieved because the snapshot only Snapshot.
contains values from signals that exist in the VSS catalog/schema of the system, each identified by VSS path)

In the proposed example, one Snapshot is defined to only have one measurement per signal.

Note that values in a Snapshot need a record type that specifies the signal, i.e. (a subtype of) since different signals are included in the SpecifiedRecord,
same message.

Stream:

Continuous delivery of data points according to a predefined agreement
This is not to be seen as a different container type. It is more a definition of the delivery method (constant stream compared to atomic message)
A stream does not have a fixed start/end time
It delivers a stream of (or Bundles, although Snapshot is the most likely subtype. A stream of TimeSeries is likely redundant, and might Records
often just be a stream of Records instead)

It might also deliver side-band information (e.g. Job information)
It is related to a delivery of a for protocols that support subscriptions.Subscription

Examples, using JSON

(Plain) :Record

{
 "value" : " 100.54"
}

TimestampedRecord:

{
 "ts" : "2020-01-10T02:59:43.491751Z # Zulu time, ISO std with microseconds
 "value" : "42"
}

GeospatialRecord:

{
 "pos" : "[format tbd]"
 "ts" : "2020-01-10T02:59:43.491751Z # Zulu time, ISO std with microseconds
 "value" : "42"
}

SpecifiedRecord:

{
 "signal" : "vehicle.Chassis.Axle2.WheelCount"
 "value" : "2"
}

SpecifiedTimestampedRecord:

{
 "signal" : "vehicle.Body.ExteriorMirrors.Heating.Status"
 "ts" : "2020-01-10T02:59:43.491751"
 "value" : "false"
}

TimeSeries:

{
 "signal" : "vehicle.body.cabin.temperature"
 "count" : "132" # Might be redundant information, optional.
 "values" : {
 {
 "ts" : "2020-01-10T02:59:43.491751"
 "value" : "42.5"
 },
 {
 "ts" : "2020-01-10T02:59:43.491751"
 "value" : "43.0"
 },
 ... 130 more records
 }
}

Snapshot:

{
 "timeperiod" {
 "start" : "2020-01-10T02:00:00Z",
 "end" : "2020-01-11T01:59:59Z"
 },
 "values" : {
 {
 "signal" : "vehicle.body.cabin.temperature",
 "value" : "22.0",
 "ts" : "2020-01-10T02:59:43.491751"
 },
 {
 "signal" : "vehicle.drivetrain.engine.rpm.average",
 "value" : "3200",
 "ts" : "2020-01-10T02:59:44.100403"
 }
}

todo: Examples of Derived/Statistics Records

Other example representations

Above we used a simple JSON encoding for the data (as an example). A more space-efficient binary format is also possible, and here we can reuse
existing technologies (AVRO, Protobuf, Thrift, CBOR, ...)

 that the AVRO schemas are also written in JSON, so unlike the examples above this is an JSON is used here to Note not example of the data content
describe how data be structured. will
The data content is stored/transferred by AVRO implementations according to the schema. It uses an efficient binary encoding for the values.

AVRO-schema example

{
 "type" : "record",
 "name" : "SpecifiedTimeStampedRecord",
 "fields" : [
 { "name" : "signal_identifier", "type" : "string" },
 { "name" : "ts", "type" : "long" },
 { "name" : "value", "type" : "Value" }
]

... where is a union of all the possible VSS types. Value
This is a little convoluted because values can be any plain data type, an Array of such datatypes:or

{
 "type" : "record",
 "name" : "Value",
 "fields" : [
 { "name" : "item", "type" : [
 "int", "long", "float", "double", "string", "boolean",
 { "type" : "array",
 "items" : ["int", "long", "float", "double", "string", "boolean"]
 }
]
 }
]
}

More AVRO encoding here: vss-tools (serializations branch)

https://github.com/GENIVI/vss-tools/tree/serialization/serializations/avro

	Data serialization / value formats

