
Virtual Platform definition for Automotive Hypervisor
Environments
Read intro below, and/or the preparation work at the bottom of this page. Then look at actual .Document Work and Release page

The Automotive Virtualization Platform

To allow further success of hypervisor environments in automotive it is essential that all vendors are able to provide compelling guest runtime
environments that make the usual automotive I/O devices available. The essential devices could be defined and agreed upon by the industry. If such a set
of devices and device features is defined a document can be crafted that that in their defines these devices and their features combination create a

.virtual platform

PORTABLE

The virtual platform definition would allow the development of virtual machine guests that like appliances in the enterprise world, could be moved
among different hypervisor systems without (minimal) modification.

SPECIFIED

A is required to achieve , and to give to vendors. clear and detailed specification true portability real support

Hand-waving about some virtual architecture is not our goal. The shall enable efficient reuse and collaborative progress among companies in specification
this industry.

REUSE

Specifications like these are best developed as open specifications and just like open-source code, it should stand on the shoulders of previous
work.

A virtual platform specification should be built upon already published work, where VIRTIO is the most prominent standard we have found, but add to it if
this is not enough. It seems that the automotive industry may needs to extend some areas. At minimum it should review and bolster support for the parts
most needed in the automotive industry, clarify which parts are required vs optional, and this work result should (will) one way or another make sure that
different automotive initiatives combine into common agreements.

The project group has discussed and found consensus on how that automotive virtual platform specification can achieve this:

Principles of meta/delta-specification (formal specification with reference/reuse)

For an automotive virtualized platform, VIRTIO is primarily a starting point although increasing in breadth over time. Participating companies in this
Hypervisor Group are also involved in proposing new functionality in future VIRTIO specifications, to cover audio, multimedia, and hardware accelerators
and other unique hardware devices often found in automotive environments.

Instead of developing additional domain or even vendor specific device frameworks and models a collaborative development could greatly reduce the
individual development of project efforts and thus spur the adoption of hypervisor based environments in the automotive sector.

Additional efforts definitely need to be spent in the area of audio virtualization and the in virtualization of co-processors like DSPs, image processors and
codec accelerators. Developing a standard model for the diverse buses found in cars like CAN or ethernet AVB could also be additional fields of
investigation.

In the work done here (see table below) we categorize device types and ensure that each need has been thoroughly analyzed so that as an industry we
can truly define the right specification, to be applicable in >95% of the typical situations.

About VIRTIO

The VIRTIO standard aims to provide a standardized interface and device models for device para-virtualization in hypervisor environments.

With development going back until 20XX the virtio device model was first introduced for the educational "lguest" hypervisor and became the default I
/O virtulaization method used with qemu/KVM and recently the default model used by many cloud providers. The virtio devices have been partially
standardized by the OASIS standardisation body in 2015 with the VIRTIO 1.0 specification which describes the transport layer and a limited set of device
models.

The currently standardized device models are: network, block, console, entropy, memory ballooning and SCSI devices. Additionally to the formally
standardized devices several additional devices exists as "implemented" devices such as GPU, input, 9pfs, vsock and crypto. Some of which are currently
in the process of standardization.

Virtio relies on a dma-like memory model meaning that all allocations are handled by the "driver" part of the device and the "device" implementation can
directly access the allocated buffers for reading or writing. This enables a resource saving and fast operating mode. Metadata is transported using so
called virt-queues that resemble ring-buffers. Depending on the architecture used, different transport and device discovery modes are supported: PCI for
x86, mmio for ARM and channel-IO for s390. These transports are geared toward the most efficient implementation per CPU architecture and allow for
efficient implementations depending on the environment.

https://wiki.covesa.global/display/MIG/Automotive+Virtual+Platform+Specification
https://wiki.covesa.global/pages/viewpage.action?pageId=12124786

1.
2.
3.

In recent years some hardware devices, like network controllers and NVMe based storage systems have evolved to be similar or compatible with the
VIRTIO protocol, to allow hardware assisted I/O virtualization using para-virtualized device models.

VIRTIO Benefits

VIRTIO's main benefit for the automotive industry lies in it's sheer existence and operating system support. The fact that standardized device models exists
allows for multiple compatible implementations of both driver and server parts of the system. The ubiquity of VIRTIO in cloud and enterprise virtualization
makes drivers readily available in all major operating systems which keeps driver maintenance effort to a minimum.

Due to the driver defined memory allocation model, vendors can choose to limit the resource usage and define safety properties to their own requirements
without impeding the standardized model and stay interoperable with existing device implementations.

The DMA-like nature of the devices allows for high-performant implementations that the easily compete with hardware assisted I/O virtualization models
while still providing relative ease of implementation.

Many vendors of automotive grade hypervisors have already adopted virtio based devices into their system offerings due to the above mentioned reasons
and the benefit of building upon these open source technologies has greatly improved the availability of commodity devices like network and block storage.

GENIVI and AGLs Role

(Opensynergy's proposal)

Vendor neutral industry bodies like GENVI and AGL can act a forum between hypervisor vendors, users and the hardware manufactures in a form that
allows open collaboration in development and maintaining a standard platform definition.

The regular events can be used as occasions for interoperability testing and standard steering. The participation in the OASIS-VIRTIO committee can be
delegated to such organization to voice the automotive industries concerns and advice in the technical committee.

GENIVI has in the past maintained domain specific APIs and standards can easily act as a body that makes sure the standard is not only maintained but
also advanced as new technologies evolve.

AGL can provide the necessary collaboration with the upstream kernel project and the Linux Foundation which in-turn opens up for collaboration with the
key industry players in cloud and enterprise computing.

Links

VIRTIO . v1.0 specification VIRTIO is the starting point for our investigation into the definition of an Automotive-Wide virtualization platform
VIRTIO v1.1 specification

What's new in (, +)VIRTIO 1.1 presentation 1 presentation 2 FOSDEM 2018 video
Latest development: VIRTIO git master

Evaluation Process for existing specifications (e.g. VIRTIO)
For each topic:

Discuss and write down the requirementsautomotive
Read chapterVIRTIO

http://docs.oasis-open.org/virtio/virtio/v1.0/virtio-v1.0.html
https://docs.oasis-open.org/virtio/virtio/v1.1/cs01/virtio-v1.1-cs01.html
https://www.dpdk.org/wp-content/uploads/sites/35/2018/09/virtio-1.1_v4.pdf
https://archive.fosdem.org/2018/schedule/event/virtio/attachments/slides/2167/export/events/attachments/virtio/slides/2167/fosdem_virtio1_1.pdf
https://www.youtube.com/watch?v=T61JG07XHc0
https://github.com/oasis-tcs/virtio-spec

3.
4.

Decide if is appropriate and complete for requirements (Gap Analysis)VIRTIO
Write down what the industry needs to do to close the gap

Consider topics not yet listed (e.g. unique automotive requirements)

Note also: Bottom of this page has a "brainstorm" list of criteria to consider.

Virtual Device Categories

The key challenge for defining a shared virtual platform definition is to first identify the various device driver types such a platform must provide, and to
evaluate if existing work so far (e.g.) covers what the automotive industry needs: VIRTIO

(Virtual)
Device

Explanation Champion
+
interested
people

Completeness /
Applicability
evaluation

Comments and discussion Spec
complete

Include
in draft
1

Ticket to track completion

Block
Storage

Flash/Disk
/persistent
storage

Kai Included also automotive persistence requirements. ready for
review

Yes

Network Access to
(shared)
physical ethernet

and guest-to-
guest
communication

Think about writing info how to share a physical network in practice

(Create bridge between virtual device and physical)
 vsock

should be
moved to
separate
section? Agre
ed.

 WiFi
seems to be
not well
covered. Shal
l we wait on
including it?

Yes

 except
WiFi - leave
comment
that it is
work in
progress)

Console Text terminal
input

Gunnar ready for
review

Yes

 - HV-9 AVPS:Console
CHAPTER DONE

crypto Access to
cryptographic
services
(hardware
accelerated)

 With new features, it
is enough.
We also added some

Now includes:

RNG - OK. just clean up discussion text.

TEE
RPMB - open question, leave it as WIP in draft.

Crypto acceleration new text is OK for draft.

 ready for
review

Discussion
part needs
cleanup

Yes

Notice

This table is now somewhat outdated and not used to drive the work any longer.
Please review the for the up to date status, or the JIRA kanban view which is used for planning the content.working document
NOTE: All the but the for can only be viewed when logged in (This is a JIRA limitation we project's JIRA tickets are public JIRA kanban view
cannot change)
Therefore to participate in the planning of AVPS development we suggest you request a login by selecting "Sign Up" in the JIRA login page

http://docs.oasis-open.org/virtio/virtio/v1.0/virtio-v1.0.html
https://jira.covesa.global/browse/HV-9
https://wiki.covesa.global/display/MIG/Automotive+Virtual+Platform+Specification
https://at.projects.genivi.org/jira/projects/HV/issues
https://at.projects.genivi.org/jira/secure/RapidBoard.jspa?rapidView=74&projectKey=HV
https://at.projects.genivi.org/jira/login.jsp

GPU Graphics
hardware

Matti/Dmitry See Graphics
, Virtualization VIRTIO

GPU Operation Highlights
 pages

 Draft spec –
requirements written

 Uncertainty (and lots
of ongoing development)
around 3D APIs - Vulkan
progress, etc.

See Graphics Virtualization page

and requirements in spec draft

 Still a
moving target
(3D). This is
reflected in
specification

 2D

3D: Proposa
l: include a
discussion
but
requirements
are not in
Draft.

Dmitry
 Morozov ple

ase finish
according to
this.

3D
requirements
that are not
accepted
upstream
were
dropped.

Check
status of
EDID
introduction.

Input Traditionally
keyboard/mouse
/etc
- for automotive
= expanded?

Matti Matti Now part of VIRTIO 1.1

Mouse/touch events may need to remap coordinates in combined
virtual systems but interface may still not be affected by this.

Yes

vsock Communication
between guest
(VM)
and host
(hypervisor)

Covered in networking chapter - to be put in its own (sub)chapter. ready for
review

Yes

Filesystem

9pfs and
other

9P = protocol to
expose host
(hypervisor)
file systems to
the guest. FS=fil
esystem.

Gunnar Completeness: Protocol:

, VIRTIO spec:
(see comment)

Need in Embedded

/Automotive: None?
Can we find a use-case?

Applicability: For
what it does, seems ok.
But might not be really
needed and therefore
"not applicable". Is there
something else/more
needed?

Links: Virtio 1.0 spec : { , }. PCI-9P 9P device type
Kernel support: Xen/Linux 4.12+ FE driver
Xen implementation details

A note on its documentation/definition not being very precise

A set of man pages seemingly defining P9? , intro others

QEMU instruction . how to set up a VirtFS (P9)
Example/info , how to natively mount a 9P network filesystem
Source code for 9pfs FUSE driver

 ready for
review

(cut down
chapter,
should be OK)

 OK to
have such a
verbose
chapter? May
be some
more work...

Yes

vIOMMU IOMMU
coordinates of
DMA devices'
connection to
memory.

Dmitry See paIOMMU Summary
ge

Applicability:

 Limit guest devices'
scope to access system
memory during DMA

 Enable scatter-
gather accesses due to
remapping (DMA buffers
do not need to be
physically-contiguous)

 Nested virtualization.
Any use-cases for
automotive?

 Group conclusion:
Not needed nested
virtualization - however
there are still two levels
because applications in
guest are used to set up
IOMMU (protection
between applications)
and then the VMs
themselves are another
level. These levels drive
the need for a virtualized
IOMMU layer (and/or
hardware support for the
same)

ARM is actively working on the specification, more features are
coming.

Nested virtualization? The use of Linux Containers inside a VM was
mentioned. That in itself is not really nested virtualization.
Namespace-based is just a kernel feature providing containers,
separation independent of a hypervisor. However, Kata Containers
is an approach to tie Linux containers into a hypervisor layer,
making them "fully" virtualized. A theoretical situation arises that
involves the use of Kata Containers on a Linux system that itself
already runs in a VM. That might constitute an example of nested
virtualization, but it was decided that this is not a mainstream idea,
possibly not supported or feasible, and in each case likely more
trouble than it is worth. "Flattening" the virtualization approach so

Further that all units still run on one hypervisor is a likely outcome.
research into partitioning methods is likely but for now this falls
outside of a mainstream automotive virtual platform definition. We
highlighted that Linux containers in their normal namespace based
implementation are already a very useful system partition tool and it
can be trivially applied also if the Linux kernel runs in a VM.

 Chapter
has been
written.

 Xen
working on
more secure
implementatio
n (memory
visibility
problem,
security of
VIRTIO
approach) -
want to keep
this open
requirement
wise to have
flexibility.

 Latest
proposal to
VIRTIO was
close to go in
but withdrawn
to address
final
comments.

But:

Need a group
review of text
(verbose) and
consider the
comments
here on the
left.

And
also VIRTIO
parts have
not been
merged to
official spec
version.

 Not final

Include
discussion
and what we
have
learned.

TBD.
Dmitry

 Morozov Art
em Mygaiev

Requirement
s to be
removed?

https://wiki.covesa.global/display/MIG/Graphics+Virtualization
https://wiki.covesa.global/display/MIG/Graphics+Virtualization
https://wiki.covesa.global/display/MIG/VIRTIO+GPU+Operation+Highlights
https://wiki.covesa.global/display/MIG/VIRTIO+GPU+Operation+Highlights
https://wiki.covesa.global/display/MIG/Graphics+Virtualization
https://wiki.covesa.global/display/MIG/Automotive+Virtual+Platform+Specification
https://wiki.covesa.global/display/~dmorozov
https://wiki.covesa.global/display/~dmorozov
http://docs.oasis-open.org/virtio/virtio/v1.0/cs04/virtio-v1.0-cs04.html#x1-680001
http://docs.oasis-open.org/virtio/virtio/v1.0/cs04/virtio-v1.0-cs04.html#x1-1560005
https://www.phoronix.com/scan.php?page=news_item&px=Xen-Linux-4.12-Changes
https://xenbits.xen.org/docs/unstable/misc/9pfs.html
https://access.redhat.com/discussions/1119043
http://man.cat-v.org/plan_9/5/intro
http://man.cat-v.org/plan_9/5/
https://wiki.qemu.org/Documentation/9psetup
https://unix.stackexchange.com/questions/398751/systemd-fails-to-mount-a-plan9-filesysem-9pfs-when-starting-a-vm
https://github.com/mischief/9pfs
https://en.wikipedia.org/wiki/Input%E2%80%93output_memory_management_unit
https://wiki.covesa.global/display/MIG/IOMMU+Summary
https://katacontainers.io/
https://wiki.covesa.global/display/~dmorozov
https://wiki.covesa.global/display/~dmorozov
https://wiki.covesa.global/display/~artem.mygaiev
https://wiki.covesa.global/display/~artem.mygaiev

Audio Matti VIRTIO proposal is
being discussed - still
pending 2019-09-25

Some info on Linux/Xen code here:
HVWS: Xen input and experience on Audio, Display, Input and TEE

Artem Mygaiev - can this comment be removed? Should it affect
the spec?

Information is
quite
complete. an
d good
understanding
written. Need
s cleanup to
become a
proper chapter

Requirement
set is NOT
ready
(merged).

 Leave
comment
and/or
discussion
and future
outlook but
not
requirement.

Sensors Automotive
sensors:

Artem Not covered by
VIRTIO specifically.
Considering SCMI over
VIRTIO as a future
standard.

Artem proposed that Systems Control Management Interface
(SCMI) protocol as a flexible and an appropriate abstraction for
sensors. It is also appropriate for controlling power-management
and related things. The hardware access implementation is
according to ARM offloaded to a "Systems Control Processor" but
this is a virtual concept. It could be a dedicated core in some cases,
perhaps in others not. EPAM/Xen tried out putting code in ARM-TF,
to act as this SCP.

SCMI destined to become a ARM-wide standard in a currently (?)
fragmented reality.

Presentation attached (PDF)

Upper protocol defined, but could imagine different lower transport.
One mailbox-style transport is defined by ARM spec? kind-of
Discussion if VIRTIO transport would be appropriate. A "SCMI
device" type added to VIRTIO?

Challenges:

Current situation in ARM is fragmented with many
overlapping unique APIs across chip vendors.
Is this doable also on x86, and is it likely to be adopted?
Discuss applicability beyond "sensors" and where
boundaries are drawn.

Reference:

Related: ARM SCMI "Platform Design document"

What about PINCTRL, and multiplexed pins in a handling the many
modern SoC. Any remaining need for lower-level protocols for
accessing/virtualizing hardware?

CPUs/SoCs have "internal" sensors too. Relating to temperature
and power mgmt. Some internal control tweaks for power
management (core frequency / voltage) are like tiny internal
actuators. Virtual access to those? Same or different APIs?

Some OS have requirements that must be met by "platform" - eg.
Android requires orientation sensor.

 Good
work done.

Split out
GPIO to
separate
chapter.

Placeholder
also for
describing
HW
passthrough
(in general)

All 3 need
another
review and
cleanup to be
complete.

 Consider
platform
requirement
for sensors
that must
exist (for
Android etc.)

No
requirements
possible in
draft spec.
Possibly
some of
discussion
and future
outlook...

Media
Acceleration
(VPUP, IPU,
CODEC)

Hardware
support for codec
/processing

Artem

 Dmitry

 Proposal to VIRTIO
might come
(OpenSynergy)

VPU = "AI" CPU
optimized for visual
recognition

Gunnar
AnderssonPle
ase check
status - in
VIRTIO
mailing list...

 Not
ready in
time. Placeh
older
referencing
currrent
proposals.

coprocessors
and other
dedicated
hardware
features

Abstraction of
SoC specifics
DSPs
Tensor
processors

 Not really in VIRTIO
scope

Matti: virtualize functions, not devices.

Gunnar: Analysis might extract some functions out of these...

 (not sure
yet if we
expect to
cover it)

USB Example
Assigning Host
USB device to a
Guest VM in
KVM, here:

https://www.linux-kvm.org
/page
/USB_Host_Device_Assi
gned_to_Guest

Which use cases do we want to address?

•USB 2.0 (EHCI controller)
•USB 3.0 (xHCI controllers will replace ECHI)
•USB C
•Host only
•Device Classes:

Mass storage. Enable use of USB device with volume
provider
Communications (e.g. serial, Ethernet)
Human interface (e.g. keyboard, mouse)

•On-The-Go (system can function as both USB host and USB
device)
•Hot-plug (partial support):

Static configuration of device “tree”. A device can be plugged
into a port. Dynamically detect device type.
Device tree cannot grow dynamically, i.e. cannot plug in a
hub

 Needs
update – see
minutes.

placeholder
for future

https://wiki.covesa.global/display/MIG/HVWS%3A+Xen+input+and+experience+on+Audio%2C+Display%2C+Input+and+TEE
https://wiki.covesa.global/display/~artem.mygaiev
https://wiki.covesa.global/download/attachments/12124654/SCMI%20Sensors%20v0.1.pdf?version=1&modificationDate=1537931512000&api=v2
https://wiki.covesa.global/download/attachments/12124654/SCMI%20Sensors%20v0.1.pdf?version=1&modificationDate=1537931512000&api=v2
http://infocenter.arm.com/help/topic/com.arm.doc.den0056a/DEN0056A_System_Control_and_Management_Interface.pdf
https://en.wikipedia.org/wiki/Vision_processing_unit
https://wiki.covesa.global/display/~gandersson
https://wiki.covesa.global/display/~gandersson
https://www.linux-kvm.org/page/USB_Host_Device_Assigned_to_Guest
https://www.linux-kvm.org/page/USB_Host_Device_Assigned_to_Guest
https://www.linux-kvm.org/page/USB_Host_Device_Assigned_to_Guest
https://www.linux-kvm.org/page/USB_Host_Device_Assigned_to_Guest

Other Serial
devices?

... and LIN
bus

 VIRTIO applicability
needs analysis

 Spec chapter needs
to be written.

LIN-bus:

Source code for linux-lin driver (for Linux, not necessarily
virtual environment):
Paper by Czech Technical University & Volkswagen Group
Research:
LIN based on SocketCAN , .1. OSADL article 2. paper (PDF)

The paper concludes that LIN data frames are similar
enough to CAN frames that it can reuse CAN
software infrastructure (such as the SocketCAN
standard). LIN is a serial bus, implemented with a
UARTs, and therefore standard UART device drivers
would be used. For virtual environments, we can rely
on the same conclusions, and therefore refer to the
answer given for CAN.
On the other hand, LIN is most popular for its
simplicity / low cost (even lower than CAN) and used
in very simple ECUs or to/from input devices like
switches, knobs and buttons. On the larger CPU it is
likely to be run by a separate dedicated
microcontroller, or at least small on-chip CPU core.
Therefore it can often be considered out-of-scope for
the CPU that implements virtualization.

UARTs are normally passed through (VM has access to memory
mapped hardware) or forwarded (hardware access is done by HV
and some abstract interface provided to the VMs) = virtio-console
standard.

SBSA specifies some access to UART but it seems tailored for
debugging.

Virtio console starts too late. What about early access for logging
boot issues. There is an early driver for console (in Linux) - uses
configuration registers as a FIFO, output only. Something nicer is
desired.

PL011 = ARM fast model UART controller, reference
implementation in versatile-express. Provided in RPi and some
other hw and virtual platforms.

 seems to have added emergency-write Unknown User (anup)
standard to the VIRTIO spec? Follow up with Anup.

 TODO

LIN should
not be
mentioned in
spec.
Comment on
implementatio
n later after
analysis.

Fold
discussion
into console
chapter.

 Uncertain
what parts
are specified
and
implemented
(in VIRTIO
and Linux)

 Cover
this in
console
chapter

emergency-
write / early
debugging
could be left
out if we are
not done
with it.

CAN virtio-can: VIRTIO-based CAN driver Decide
opinion and
write chapter

Possible, no
firm
standard. N
o
specification
- just an
example
driver
implementati
on.

Unknown
User (anup)
- can we
summarize
again?

Time
Sensitive
Networks

Nikola (TSN)

Need new
volunteer to
complete it,
perhaps from
GHS?

The required features
are not present in the
network virtio devices as
of virtio 1.0.

 Is this applicable
enough to move into
specification as
requirements? -->

Must have requirements:

IEEE 802.1AS compatible egress and ingress timestamps on
ethernet frames available in the virtio consumer OS

Good to have:

IEEE 802.1Q-2011 queue enhancement mechanisms
available in the virtio consumer OS

Interesting read about KVM: https://www.linux-kvm.org
/page/Multiqueue

General architectural considerations:

What if there is more than one consumer of the IEEE 802.1
 defined network timebase on the same system?AS

Comment
on the
possibility of
implementin
g TSN is not
prevented,
(even
without a
virtual
interface
standard)

Need some
more
confirmation

Bluetooth OpenSynergy
with BT
experience ?

 Not in VIRTIO scope Virtualization of BT hardware might not be required. However,
commenting on various system designs seems appropriate.

Example: There exists an interface for virtualized audio device
(virtio-sound), but Bluetooth is also an audio device (among other
things...) What does this mean for how to build an architecture that
(for example) uses both virtualization for audio, and bluetooth
technologies.

 Write at
least a
Discussions
chapter.
It is an
important
topic,
common topic.

The HCI
interface is
the likely level
of
passthrough
or
virtualization.
The VM
should have
access to HCI
since it can
then
implement
standard
Bluetooth
stacks on top
of it.

Not ready in
time for first
draft.

 Must be
mentioned,
at least a
comment
and future
plan.

https://github.com/trainman419/linux-lin/tree/master/sllin
https://www.osadl.org/?id=1515
https://rtime.felk.cvut.cz/can/sllin-rtlws14-paper.pdf
https://wiki.covesa.global/display/~anup
https://github.com/ork/virtio-can
https://wiki.covesa.global/display/~anup
https://wiki.covesa.global/display/~anup
https://www.linux-kvm.org/page/Multiqueue
https://www.linux-kvm.org/page/Multiqueue

Memory
Balloon
Device

Gunnar In
VIRTIO. Applicability to
automative is
questionable.

 May be partly applicable - I could write something here to get
us started. - Gunnar

RAM device is being discussed as a better solution later on.
Proprietary protocols.

 TODO Not
strictly
necessary in
the first draft
version

Random
Number
Generator

Covered in the Crypto chapter.

Watchdog Very important for
embedded systems...
Let's see what is there
and what we need to do.

SBSA has a generic interface, it should be the closest one.

Aim for simple interface.

Avoid VIRTIO/virt-queue type solution...

http://infocenter.arm.com/help/topic/com.arm.doc.den0029c
/Server_Base_System_Architecture_v6_0_ARM_DEN_0029C_SBS
A_6_0.pdf

 Write
chapter.
Adam
Lackorzynski

 Want to
include

 TODO

All related JIRA Tickets

Key Summary T Created Updated Due Assignee Reporter P Status Resolution

HV-43 AVPS:General Questions Apr 19,
2021

Apr 19,
2021

Unassigned Gunnar
Andersson

NEW Unresolved

HV-42 AVPS:ISP = Image Signal
Processors

Apr 12,
2021

Apr 12,
2021

Unassigned Gunnar
Andersson

TO
DO

Unresolved

HV-41 AVPS: Interrupts Mar 01,
2021

May 17,
2021

Unassigned Gunnar
Andersson

CHAPTER
DONE

Unresolved

HV-40 AVPS:References
Chapter

Jun 22,
2020

May 31,
2021

Unassigned Gunnar
Andersson

CHAPTER
DONE

Unresolved

HV-39 AVPS:Tensor processors
and similar accelerators

May 18,
2020

Jun 08,
2020

Unassigned Gunnar
Andersson

WAIT Unresolved

HV-38 AVPS:Communication
Networks: WiFi

May 04,
2020

May 31,
2021

Unassigned Gunnar
Andersson

CHAPTER
DONE

Unresolved

HV-37 AVPS:Communication
Networks: TSN

May 04,
2020

May 17,
2021

Unassigned Gunnar
Andersson

WAIT Unresolved

HV-36 AVPS: (Document)
Restructure chapters

Apr 27,
2020

Jun 08,
2020

Unassigned Gunnar
Andersson

WAIT Unresolved

HV-35 AVPS:Development
Support

Apr 06,
2020

Jun 08,
2020

Unassigned Gunnar
Andersson

WAIT Unresolved

HV-34 AVPS:Media codecs and
Cameras

Feb 24,
2020

May 17,
2021

Dmitry Sepp Gunnar
Andersson

CHAPTER
DONE

Unresolved

HV-33 AVPS:GPIO Jan 20,
2020

Dec 07,
2020

Dmitry Sepp Gunnar
Andersson

CHAPTER
DONE

Unresolved

HV-32 AVPS:Power
Management

Jan 20,
2020

May 31,
2021

Oleksandr
Tyshchenko
[X]

Gunnar
Andersson

CHAPTER
DONE

Unresolved

HV-31 AVPS:MOST Jan 20,
2020

Jan 20,
2020

Unassigned Gunnar
Andersson

CHAPTER
DONE

Unresolved

HV-30 AVPS:CAN-XL Jan 20,
2020

Jan 20,
2020

Unassigned Gunnar
Andersson

CHAPTER
DONE

Unresolved

HV-29 AVPS:FlexRay Jan 20,
2020

Jan 20,
2020

Unassigned Gunnar
Andersson

CHAPTER
DONE

Unresolved

HV-28 AVPS:CAN Jan 20,
2020

Feb 24,
2020

Unassigned Gunnar
Andersson

WAIT Unresolved

http://infocenter.arm.com/help/topic/com.arm.doc.den0029c/Server_Base_System_Architecture_v6_0_ARM_DEN_0029C_SBSA_6_0.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.den0029c/Server_Base_System_Architecture_v6_0_ARM_DEN_0029C_SBSA_6_0.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.den0029c/Server_Base_System_Architecture_v6_0_ARM_DEN_0029C_SBSA_6_0.pdf
https://jira.covesa.global/browse/HV-43?src=confmacro
https://jira.covesa.global/browse/HV-43?src=confmacro
https://jira.covesa.global/browse/HV-43?src=confmacro
https://jira.covesa.global/browse/HV-42?src=confmacro
https://jira.covesa.global/browse/HV-42?src=confmacro
https://jira.covesa.global/browse/HV-42?src=confmacro
https://jira.covesa.global/browse/HV-42?src=confmacro
https://jira.covesa.global/browse/HV-41?src=confmacro
https://jira.covesa.global/browse/HV-41?src=confmacro
https://jira.covesa.global/browse/HV-41?src=confmacro
https://jira.covesa.global/browse/HV-40?src=confmacro
https://jira.covesa.global/browse/HV-40?src=confmacro
https://jira.covesa.global/browse/HV-40?src=confmacro
https://jira.covesa.global/browse/HV-40?src=confmacro
https://jira.covesa.global/browse/HV-39?src=confmacro
https://jira.covesa.global/browse/HV-39?src=confmacro
https://jira.covesa.global/browse/HV-39?src=confmacro
https://jira.covesa.global/browse/HV-39?src=confmacro
https://jira.covesa.global/browse/HV-38?src=confmacro
https://jira.covesa.global/browse/HV-38?src=confmacro
https://jira.covesa.global/browse/HV-38?src=confmacro
https://jira.covesa.global/browse/HV-38?src=confmacro
https://jira.covesa.global/browse/HV-37?src=confmacro
https://jira.covesa.global/browse/HV-37?src=confmacro
https://jira.covesa.global/browse/HV-37?src=confmacro
https://jira.covesa.global/browse/HV-37?src=confmacro
https://jira.covesa.global/browse/HV-36?src=confmacro
https://jira.covesa.global/browse/HV-36?src=confmacro
https://jira.covesa.global/browse/HV-36?src=confmacro
https://jira.covesa.global/browse/HV-36?src=confmacro
https://jira.covesa.global/browse/HV-35?src=confmacro
https://jira.covesa.global/browse/HV-35?src=confmacro
https://jira.covesa.global/browse/HV-35?src=confmacro
https://jira.covesa.global/browse/HV-35?src=confmacro
https://jira.covesa.global/browse/HV-34?src=confmacro
https://jira.covesa.global/browse/HV-34?src=confmacro
https://jira.covesa.global/browse/HV-34?src=confmacro
https://jira.covesa.global/browse/HV-34?src=confmacro
https://jira.covesa.global/browse/HV-33?src=confmacro
https://jira.covesa.global/browse/HV-33?src=confmacro
https://jira.covesa.global/browse/HV-33?src=confmacro
https://jira.covesa.global/browse/HV-32?src=confmacro
https://jira.covesa.global/browse/HV-32?src=confmacro
https://jira.covesa.global/browse/HV-32?src=confmacro
https://jira.covesa.global/browse/HV-32?src=confmacro
https://jira.covesa.global/browse/HV-31?src=confmacro
https://jira.covesa.global/browse/HV-31?src=confmacro
https://jira.covesa.global/browse/HV-31?src=confmacro
https://jira.covesa.global/browse/HV-30?src=confmacro
https://jira.covesa.global/browse/HV-30?src=confmacro
https://jira.covesa.global/browse/HV-30?src=confmacro
https://jira.covesa.global/browse/HV-29?src=confmacro
https://jira.covesa.global/browse/HV-29?src=confmacro
https://jira.covesa.global/browse/HV-29?src=confmacro
https://jira.covesa.global/browse/HV-28?src=confmacro
https://jira.covesa.global/browse/HV-28?src=confmacro
https://jira.covesa.global/browse/HV-28?src=confmacro

VIRTIO-defined devices

The VIRTIO 1.0 specification is organized a bit differently, and more generic than our detailed list above. Here is a table of contents for much abbreviated
VIRTIO 1.0, just to give an overview on the most important parts. Consider, especially, the All defined devices are under these limited types of devices.
categories only for the 1.0 version.

2 Basic Facilities of a Virtio Device
2.4 Virtqueues
3.1 Device Initialization
3.2 Device Operation
3.3 Device Cleanup
4 Virtio Transport Options
4.1 Virtio Over PCI Bus
4.2 Virtio Over MMIO
4.3 Virtio Over Channel I/O
5 Device Types
 5.1 Network Device
 5.2 Block Device
 5.3 Console Device
 5.4 Entropy Device
 5.5 Traditional Memory Balloon Device
 5.6 SCSI Host Device

7 Conformance
7.2 Driver Conformance
7.3 Device Conformance
7.4 Legacy Interface: Transitional Device and Transitional Driver Conformance

B Creating New Device Types

When looking at a particular proposed device standard, evaluate characteristics/criteria:

Criteria (brainstorm):

- Availability?
- Is there a proposal for standard (specification)?
- Is it accepted in VIRTIO?
- Is it a de-facto standard?
- Implementation status
- ...In QEMU/Linux kernel?
- ...FOSS in a GitHub Repo?
- ...Commercial/closed-source implementations?
- ... Number of implementations?

- Complexity estimation?
- ... e.g. CAN Device class, vs GPU (need to consider large User-space
library, complex HALs,

- Performance?
- ...mostly implementation dependent? Are the technical requirements hindering implementing it efficiently, for some reason? Does it matter?

- Code Maturity?
-- ...implementation dependent, but evaluate that which exists

- Evaluate: Security aspects
- Evaluate: Functional Safety aspects

HV-27 AVPS:Storage Jan 20,
2020

May 17,
2021

Oleksandr
Tyshchenko
[X]

Gunnar
Andersson

CHAPTER
DONE

Unresolved

HV-26 AVPS:Booting Jan 20,
2020

Mar 15,
2021

Kai [X] Gunnar
Andersson

CHAPTER
DONE

Unresolved

HV-20 AVPS:Watchdog Jul 30,
2019

May 31,
2021

Matti Möll Matti Möll

CHAPTER
DONE

Unresolved

HV-19 AVPS:Random Number
Generation

Jul 30,
2019

Mar 01,
2021

Unassigned Matti Möll

CHAPTER
DONE

Unresolved

 Showing 20 out of 32 issues

https://jira.covesa.global/browse/HV-27?src=confmacro
https://jira.covesa.global/browse/HV-27?src=confmacro
https://jira.covesa.global/browse/HV-27?src=confmacro
https://jira.covesa.global/browse/HV-26?src=confmacro
https://jira.covesa.global/browse/HV-26?src=confmacro
https://jira.covesa.global/browse/HV-26?src=confmacro
https://jira.covesa.global/browse/HV-20?src=confmacro
https://jira.covesa.global/browse/HV-20?src=confmacro
https://jira.covesa.global/browse/HV-20?src=confmacro
https://jira.covesa.global/browse/HV-19?src=confmacro
https://jira.covesa.global/browse/HV-19?src=confmacro
https://jira.covesa.global/browse/HV-19?src=confmacro
https://jira.covesa.global/browse/HV-19?src=confmacro
https://jira.covesa.global/secure/IssueNavigator.jspa?reset=true&jqlQuery=%22Epic+Link%22+%3D+HV-6+&src=confmacro

Importance for automotive use-case
- ...Is it generally applicable for many use cases or for a special case?

	Virtual Platform definition for Automotive Hypervisor Environments

