
CVII Tech Stack
Child pages:

CVII Technology Stack meeting notes
CVII Technology Stack -- pre-kickoff ideas page
CVII Tech Stack: "Deep-dive" topics
CVII Tech Stack technologies - Protobuf
CVII Tech Stack Terminology
CVII-TS: Binary encoding for VSS-based data transfer
CVII-TS: MQTT
CVII-TS: VISS v2 server implementation in C++
IoT-event-analytics and Vehicle-Edge projects
Workshop and conf planning

The Technology Stack development is one of three main tracks of the Common Vehicle Interface Initiative

blocked URL

Goal of this activity:

Find/Develop/Define the required technology solutions (software, primarily) that are involved in transfer/storage/processing of the industry-common
 (as agreed upon by the other CVII tracks).models for data & services

This includes anything within the "full scope" system (i.e. in-vehicle, edge & cloud), if it is software related to the common data/services model
technologies.

Cross-platform support seems to be a general request but Linux is likely the dominant platform for the code.developing / testing

The term Technology Stack is used to describe all software that is related to the transfer and use of data and services that adhere to the common model
(s).

Examples:

blocked URL

How is the Technology Stack defined and developed?

- Through a combination of formal specification and open-source implementations, as chosen by the participants.

- Of course, by evaluating and selecting existing technologies where they exist, and making the necessary adjustments/bindings/plugins to make the
common data/services models fit into existing frameworks.

- ... and developing the documents and software code that is missing.

Technology Stack content analysis, and development state

The following lists show an overview of planned, desired, and existing technologies - including format-converters, code-generators, and bindings to
existing technologies.

It should be continuously updated to reflect completion of technology definition (specification) or implementation

For now all known parts are mentioned. Overlapping initiatives ought to be possible to combine, to work towards a single consistent full-stack design.

The purpose of the technology stack is to lead (the automotive industry) towards a reasonable selection of solid core technologies without trying to us
support everything under the sun. In other words, there might not always be one selected choice in the software solutions, protocols, etc, but there should
still be only one choice for the underlying data/services model, according to CVII goals.

https://wiki.covesa.global/display/WIK4/CVII+Technology+Stack+meeting+notes
https://wiki.covesa.global/display/WIK4/CVII+Technology+Stack+--+pre-kickoff+ideas+page
https://wiki.covesa.global/pages/viewpage.action?pageId=16614403
https://wiki.covesa.global/display/WIK4/CVII+Tech+Stack+technologies+-+Protobuf
https://wiki.covesa.global/display/WIK4/CVII+Tech+Stack+Terminology
https://wiki.covesa.global/display/WIK4/CVII-TS%3A+Binary+encoding+for+VSS-based+data+transfer
https://wiki.covesa.global/display/WIK4/CVII-TS%3A+MQTT
https://wiki.covesa.global/pages/viewpage.action?pageId=12124775
https://wiki.covesa.global/display/WIK4/IoT-event-analytics+and+Vehicle-Edge+projects
https://wiki.covesa.global/display/WIK4/Workshop+and+conf+planning
https://www.plantuml.com/plantuml/svg/XS-n2eCm40RWFKznfD0Xu2Hkuc8xE7IoEBcSIQoXca0yKlhsJHnQ9tlJ7Sd_SOTUJcP1qd2wR0LSYDejYxFGwSd8MKDZIViHPUeC6IGJj12zvO0hr5tJC8O_vheLy0iImXbQxOE9qNAeRaxfcKDPafQJTRDxl3FqP29DLPMm88V_L6zRGglGguJMyIrAww5hRDYxUJwEHG4ynk_V24HLFWyPMXbBzqActCjc6xkVq_hxEVt_0000
https://www.plantuml.com/plantuml/svg/XP4z3i8m34Rtdi8g6rAx05lL1SG5u08ck6r46oF7WBWzBJybGmdPykdfvREJe9Z6TgW4iyMYgbOhI8j3kIVJE6wvliDEqPnIA0eTimn5ROL6onBGW_eai6pxirn2kcNf0p3ihYHAugEEQk2IAS-QZmGrEH9K_cCnFJVjwBgBimRLieEpiBBXDkuQg9zzMdiG54jnnKXDUJQe2BuV2MkAMjxCJmSwRE_Ungjye2bBdkVfmB0s98bwc6T7lhdi_Ib1yDn9S7_kExX_1mx2J_yW6ji4sUlr1m00

1.
2.

3.

Converters and Code Generators

A listing of conversions like this might look like a approach, but it should be clear that the is not to create that, as explained in anything-to-anything goal
the previous section. Instead, it is to make sure there are solutions to hook into technologies that are , or . strongly desired unavoidable legacy

Terminology
It can be useful to refer to a shared understanding . Make sure you provide input to these terms.CVII Tech Stack Terminology your

Technology Stack components

A) Architecture(s) and terminology

To get consensus around terminology and parts to develop we need to revise this in diagram and text form.
This page outlines the goal, and challenges to reach pluggable software components, to be used in a shared reference architecture but also
possible to use in different variants that companies may come up with.
Agree on and then use the to understand these designs. Of course, these terms are open to additional input.CVII Tech Stack Terminology

A1) Partial system diagram (primarily representing an in-vehicle, possibly a single ECU, but terms are
generic and components could be reused in a different setup)

https://wiki.covesa.global/display/WIK4/CVII+Tech+Stack+Terminology
https://wiki.covesa.global/display/WIK4/Towards+CVII+pluggable+components
https://wiki.covesa.global/display/WIK4/CVII+Tech+Stack+Terminology

Source file for this diagram is : It can be imported into and edited again.here https://app.diagrams.net/

A2) Vehicle-to-cloud full architecture

The best representation at this time is the . : Be aware that the technologies mentioned therein are not Covesa CCS Project Reference Architecture NOTE
set in stone. Rather, this page represents a broader view of the variation of software components/protocols/etc. that may apply.

B) Development Plan for needed technology (definitions, implementations, tools)

This is intended to a relatively complete list of needed deliverables.become
Add to it, if some technology you need is missing.

Conversion from VSSdefinitions (data catalogs) to alternative file format:

Note: Conversions to other formats are done to , or to hook into useful existing technology that happens to consume extend VSS with additional features
another input format.

https://wiki.covesa.global/download/attachments/12124742/CVII%20Tech%20Stack%20Diagrams?version=1&modificationDate=1642511730200&api=v2
https://app.diagrams.net/
https://wiki.covesa.global/display/WIK4/CCS+Reference+Architecture+-+Work+Breakdown+Structure

VSSo . See here.vspec2ttl in vss-tools VSSo specification
JSON ,vss2json in vss-tools
GraphQL and BMW implementation vspec2graphql in vss-tools vss2graphql_schema
ARA:COM, AUTOSAR-XML format. (Sort of available indirectly, via Franca IDL conversion and then FARACON)
Protobuf - () in vss-tools (Used as a definition of the VSS catalog. Not sure exactly how that is to be used - instead we vspec2protobuf
should consider Protobuf under the serialization topic below)
Franca IDL - see below for links. Similar comment as for the vspec2protobuf defining the "VSS" or the prerequisite for transferring of the values
VSS?
DDS – Evaluating interest

Serialization / value-message formats

Note 1: This is different from the VSS catalog in that it does not define the signals, it defines how to transfer (or store) measured of those signals.values

Note 2: Several of these are generic technologies that could be use any number of ways to transfer data (e.g. JSON). The purpose of this work is to
define a single canonical definition for each such format

JSON N.B. lot can be defined by reusing the formats of the VISS specification, but putting it in independent terms in a separate specification
would be useful.
Protobuf
AVRO Under development in vss-tools
Franca IDL Conversions exist in vss-tools , , but likely still needs an update. Plenty to improve/redefine also as part of how VSS shall alt1 alt 2
integrate with VSC
gRPC (Being investigated/added in KUKSA.VAL. Is it for data/notifications or other APIs? How does it differ from protobuf definition. Status Seb

 ?)astian Schildt

Data transfer protocols

Note: Some of these will require using a serialization format to define the payload. Others may bring/define their own formats.

VISS – Specification
 , WAII implementation (Go lang)
 also (partially) implemented in , and other?...KUKSA.VAL
SOME/IP () – (via Franca IDL and CommonAPI). Likely additional ways to implement a more direct VSS SOME/IP connection.

(Also exists, also via Franca+CommonAPI)WAMP
MQTT – There exists defined in but not a plain usage where you use simple MQTT-subscription (with VISS over MQTT VISS specification,
topics = VSS signals).
 see separate analysis page

Runtimes and Frameworks

This is a list of software projects that do somewhat more than just a "data protocol" but are still involved in defining data exchange.
Note: Some of these define their own protocols, or the protocol is hidden (abstract) behind the framework APIs.

Android Automotive (Vehicle-Properties in VHAL) Under development: Code generator for VSSAndroid Automotive Vehicle Properties
(See this vss-tools and/or). Once merged, see in vss-tools.fork code_generation branch on vss-tools main branch
Apache Kafka, and NiFi – This appears to requires some simple plugins/definitions of how to transfer VSS data to leverage the whole framework
DAPR – "Distributed Application Runtime" – Data and RPC framework

Databases / Storage

Note: There are many choices here. Some might simply implement a simple in-memory table. Others define themselves as "databases" or "key-value
stores".

In-vehicle

Apache IoTDB – under development, StephenL is working on it.
Redis – popular choice for in-memory key/value store (and more features)

OEM/Neutral Cloud

A number of choices are possible here and there are no plans yet to prioritize a particular one at this point.
Rather whichever existing implementations become known / implemented first, ought to be listed here.

(only examples)

InfluxDB
Postgres Time-Series
MongoDB
cloud-providers data store services (AWS, Azure, Google)
and likely many other options...

https://github.com/COVESA/vss-tools/tree/master/contrib/vspec2ttl
https://w3c.github.io/vsso/
https://github.com/COVESA/vss-tools/blob/master/vspec2json.py
https://github.com/COVESA/vss-tools/blob/master/contrib/vspec2graphql.py
https://github.com/COVESA/vss2graphql_schema
https://github.com/COVESA/vss-tools/blob/master/contrib/vspec2protobuf.py
https://github.com/COVESA/vss-tools/tree/serialization/serializations/avro
https://github.com/COVESA/vss-tools/blob/master/vspec2franca.py
https://github.com/COVESA/vss-tools/pull/6
https://github.com/COVESA/vehicle_service_catalog
https://wiki.covesa.global/display/~Sebastian.Schildt@de.bosch.com
https://wiki.covesa.global/display/~Sebastian.Schildt@de.bosch.com
https://github.com/w3c/automotive/tree/gh-pages/spec
https://github.com/MEAE-GOT/WAII
https://github.com/eclipse/kuksa.val
https://wamp-proto.org/
https://github.com/w3c/automotive/tree/gh-pages/spec
#
https://github.com/BitManu/vss-tools/tree/code_generation/contrib/vspec2aaproperties
https://github.com/COVESA/vss-tools/tree/code_generation/
https://github.com/COVESA/vss-tools/tree/serialization/serializations/avro
https://dapr.io/
https://iotdb.apache.org/
https://redis.io/

Data processing

Apache Spark

Other software frameworks
These typically have a scope beyond data/RPC only but support the common data/services model in their implementation

AOS – "Kubernetes for the vehicle"

Components for services / remote-procedure-call (VSC)

Conversion from VSC to alternative file formatcatalogs

Note: Conversions to other formats is done to extend it with additional features or hooking into existing technology.

ARA:COM (AUTOSAR-XML format). Defining the data items is a step towards then using SOME/IP or other protocol AUTOSAR side, leveraging
AUTOSAR-defined code generators.
"gRPC IDL" (i.e. protobuf extension)
Franca IDL - VSC project has Franca import/export as a core focus. Occasionally VSC is considered almost a new version/extension of
Franca. Better definitions will follow, but the direction to stay close to it is clear.

RPC protocols

Note 1: In contrast to VSS, for VSC/services we did not separate the serialization definition from the protocol. It is simply understood that each RPC
protocol will define the wire-format of its method-invocation request and responses as part of its specification.

1) W3C-chosen official protocol for automotive services "RPC"

Defining such a protocol is being discussed, to mirror the definition of VISS for data. A definition project has not yet been launched since
it relies on the VSC-language and semantics being solidified first. (It may of course decide to reuse existing definitions, including some
of the ones listed below)

2) Options

gRPC
GraphQL - through its mutation feature GraphQL can theoretically support RPCs. Is there interest in doing that?
SOME/IP (Possible if converted to Franca IDL, via the CommonAPI framework Just like for VSS there are likely ()). capicxx-someip
additional ways to implement a more direct VSC SOME/IP connection
DDS ? – Evaluating interest
DAPR – "Distributed Application Runtime" – Data and RPC framework

Runtimes and Frameworks

Android Automotive - likely less applicability than for VSS, since Android has its own preferred HAL. Describing Android-specific interfaces with
the generic common IDL might have less value therefore, but it is of course a theoretical possibility if this is a benefit to someone.
...

Noteworthy software frameworks (typically with scope beyond data only), but to include VSC

AOS – "Kubernetes for the vehicle" VSC connection not defined yet

Other things mentioned for completeness
Is a candidate worth including and studying here? (It is Franca IDL based, and also supports overlapping technologies like MQTT)JOYNR

Shortlist, prioritized projects
(2021, not clear if it is still representative)

https://aoscloud.io/
https://github.com/GENIVI/capicxx-someip-runtime
https://dapr.io/
https://aoscloud.io/
https://github.com/bmwcarit/joynr

1. "Second" VISS v2 implementation (in addition to WAII implementation)

 Background

C++ seems to be requested. There is also some mild interest in Rust in the industry, but so far it seems not strong enough to supplant C/C++ as
the main choice.
KUKSA has both done VISS implementations in C++, based on VISS v1 - needs to be updated to v2
AOS includes a VIS(S) implementation in Go, based on VISS v1

 Details:

VISS v2 server Planning / Work Breakdown page

2. Demonstration of VSC-based development

 Background:

Bosch eager to get started. Discussions about VSC () may need to be progressed first (or in parallel).latest intro material here
Getting started on a demonstration case will naturally drive the development of "key components" that are missing.

3. Define "efficient binary encoding" of VSS payloads, as a reusable implementation

 A) For individual message updates through protocols (VISS? MQTT, etc.)
 B) For in-memory storage of multiple data points and possibly subsequent batch (image) transfer.

Volunteers needed – see Planning / Work Breakdown page

Project Backlog – development project candidates

VSS to Android Properties implementation (Code Generator). It should likely introduce jinja2 template based generation, similar to the vsc-tools
. .Work breakdown page
VSS over MQTT (Starting point exists in Develop full implementation, include access-control/security, and as a reusable component IoTea impl.
separated out from IoTea framework) Work breakdown page
VSS to/from Autosar ARA:COM XML format
VSC to/from Autosar ARA:COM XML format
Proper converter. Status and remaining steps are in .VSS to Franca IDL vss-tools/PR#6

for further, potential examples, refer to the table based overview below.

Historical / preparation information.

Initial Brainstorm, implementation ideas

Which technologies come immediately to mind?

(MQTT moved to separate page)
Investigation point: VISSv2 with MQTT as "transport" - is there a possible compatibility?

 This has now been showed as an idea in W3C. link?

General (MQTT and other): Binary data representation to optimize compared to VISS-JSON transport.
...use also as variant encoding in VISS?
...use as independent protocol (not part of VISS spec)

AUTOSAR Adaptive compatibility
SOME/IP is important so we cannot ignore it.
DDS also.
(However, ARA:COM abstracts the technolgies. For AUTOSAR systems, generating ARA:COM XML format is enough, the rest
follows. For non-AUTOSAR systems that are going to communicate with AUTOSAR systems, however, something that implements the
concrete chosen protocol is needed.

Previous work: and , and)Franca IDL Common API for SOME/IP vSomeIP Franca IDL AUTOSAR XML converter
Opinion: SOME/IP is used in a very static way – an alternative might be desirable.
(AUTOSAR) RESTful services (not HTTP, rather stateless principle, get, set etc.) Only discussions currently, no drive?

How is this concrete protocol defined?
Bosch might be willing to work on this.

Protobuf conversion Main page
(because it is used and preferred by SENSORiS, but is also generally popular, and there was a recent vspec2proto converter proposal in)vss-tools

VSC to code generation

Code generation - general stubs/proxies (C++ and other)

A lot of communication related technologies were investigated in the Generic Protocol Evaluation project during 2019.
A set of reference links are here : List of relevant technologies

https://github.com/MEAE-GOT/WAII
#
https://at.projects.genivi.org/wiki/download/attachments/74973446/VCS-IDL%20presentation%20July%201%20ver%208.pdf?version=1&modificationDate=1625161469000&api=v2
#
https://github.com/GENIVI/vsc-tools
https://wiki.covesa.global/display/MIG/VSS+to+AOSP+translation+-+WBS
https://github.com/GENIVI/iot-event-analytics
#
https://github.com/GENIVI/vss-tools/pull/6
https://github.com/franca/franca
https://github.com/GENIVI/capicxx-someip-tools
https://github.com/GENIVI/vsomeip
https://github.com/genivi/franca_ara_tools
#
https://github.com/GENIVI/vss-tools
https://wiki.covesa.global/pages/viewpage.action?pageId=12124331

AUTOSAR

Current tool chain

(is not existing or not yet clearly defined). (The rest exists already)RED

blocked URL

Notes

Going via Franca is complicated... VSS/VSC to AUTOSAR directly makes sense

Direct approach for AUTOSAR

blocked URLblocked URL

Vehicle Edge & IoT Event Analytics

https://www.plantuml.com/plantuml/svg/dLFBJiCm4Bpp5QjoQGyk4WTELL2KKYaIfHNXTUXbwpfWaTYMRHxzUpQDKqhQyF8Xg-pQixCpMhJyIPRe1HnFw2G9zCRe4HBw5FeHf8AxB8DSMxhKWz782_waD9NM3AsNEN8VHO0ENfqxEi9FkDYOGdBqKYleKV4qjwWu3iqQ5ge_MaRtwNnqiem65UhonKabd6F6QaunG9xcNo0RXfCD4gJZI-ZJ0oE8Y723R-dLtRiP9heijOhdAR7pMXUkcnP78n-5Qb4xeqFYZJEWch3ejJtlnbYjN1lYPakTzCfqAT8vE8_ykK9nQ-T5oPpE_HjQqKXEjwJf929BKmpFIMsb5OjlRsPPV0scG5_PEUY4hQKYXjrgaNsJ-3fEPbVT8-PeaMjrqC50XZrCBxzr3UrxMNJJQ6PQgA0vPN-qZsZjkrVJocRJYnEIVICSwVPxpGZqe1bXfHep_ehPDk4GqN_wsz2brGIsqc-AHPk5gwlRLEDYYC1U36LhN-Xw-0_RjKbldmQXwx2R3Qtt2zMuhVxDieNuoMjtYB08m0gH-tQn1HWshmujkAh_1m00
https://www.plantuml.com/plantuml/svg/dP5DIyGm48Rl-ok6Uj53Tc4FdagXj0g2IyMkuc4lqpPj0saIakZQV-_qmxBgwi50Pc1cUFA-4xHbAphq72vkwIG912bwX8I2r0q81Szv3hMsD1H067fUjafJgsTelQYnz544wE3DkTKAJt7NT22W-XOjhaqF1tKP5j4-IxDmKqHN0wvuTK9nvvYnkgGyixRuZJL9Yv_sMHu_ifVT_PzQqBvtyWiXDaQA4htGQi6GdeOhRiVgGNcjfVjT4tcWwREoycntixbx0D4PkIQJdtmZqG-R6vswtddUCQThVqJB5wZJ7HVcB3TDy_ynguh-WXOFhD97nQ9neNI1MT6qdWhJXiQu3CqEftHQdIN-R0plV000
https://www.plantuml.com/plantuml/svg/dP1DJyCm38Rl_HNMkC0XcxG3fwhIj8A4n5H41-AmYvjbQwGqYUAmiN-FsvLgiC41I_cGupn-NsEGjMumAhYwvvZFOLIgiDDIWRPHXGrAHNo5jCfUotawgJBOkC0_Hf2cKSdQEkEs1u4XQYwEMGP8i2EP97ZAlkM04UUd673i3x2orynS5ddHGczQNFLEsYeYuOFZjjIpflY3TTGvUraMvUnPl2qU_zI2uQCntmWpxusM6BMp0uRrR9LLeSkkR7JEqE-Qs0DNNvHL5ekxoSCJwCQRCPlyudk3iPrSvvGE55KZo6tY7eCQeEGQfVr5RfwN_sEkrvGaF7WGQxUt8ki6oWj4qDiwSk8ueMuVYdg7n-CqsqiyVsZxV080

	CVII Tech Stack

