CVIl Tech Stack technologies - Protobuf

Information related to translation or use of Protocol Buffers (a.k.a. protobuf), together with the common data or service model.

= Recently a proposal for vspec2proto in vss-tools

Purpose:

® As a means to define an efficient binary serialization format
® As a means to reuse code-generators for skeleton-code to work with VSS data in various languages.

Alternatives:
* AVRO?
Useful links:
Main site for Protocol Buffers: https://developers.google.com/protocol-buffers/
Protobuf 3 reference specification

Tutorials (Google) https://developers.google.com/protocol-buffers/docs/tutorials
Comparison of data serialization formats: https://en.wikipedia.org/wiki/Comparison_of_data-serialization_formats

Concerns

® How to decide on groups of parts

® You have to provide all sub-branches even if only interested in one leaf - especially where a branch has both sub-branches and leaves, this is
unexpected.

® Some groups make sense always, e.g. GPS.{Lat,Long}

® optionality is supported in Protobuf. Should all branches/leaves even be optional in the message definition?

One translation proposal encodes each branch as its own type (protobuf: message) . Leaves are, but branches (message types) containing branches
(other message types) are also shown:

https://github.com/GENIVI/vss-tools/pull/42
https://avro.apache.org/
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/docs/reference/proto3-spec
https://developers.google.com/protocol-buffers/docs/tutorials
https://en.wikipedia.org/wiki/Comparison_of_data-serialization_formats

Example translation VSS -> Protobuf

nmessage Vehi cl eBodyW ndshi el dFront Heating {
bool Status = 1;

}

message Vehi cl eBodyW ndshi el dFr ont Washer Fl ui d {
bool Level Low = 1;
ui nt 32 Level = 2;

}

message Vehi cl eBodyW ndshi el dFront {
Vehi cl eBodyW ndshi el dFront Wpi ng Wping = 1;
Vehi cl eBodyW ndshi el dFront Heati ng Heating = 2;
Vehi cl eBodyW ndshi el dFr ont Washer Fl ui d WasherFluid = 3;
}

message Vehi cl eBodyW ndshi el dRear W pi ng {
string Status = 1;

}

nessage Vehi cl eBodyW ndshi el dRear Heating {
bool Status = 1;

}

message Vehi cl eBodyW ndshi el dRear Washer Fl ui d {
bool Level Low = 1;
ui nt 32 Level = 2;

}

message Vehi cl eBodyW ndshi el dRear {
Vehi cl eBodyW ndshi el dRear W pi ng W ping = 1;
Vehi cl eBodyW ndshi el dRear Heati ng Heating = 2;
Vehi cl eBodyW ndshi el dRear Washer Fl ui d WasherFluid = 3;
}

message Vehi cl eBodyW ndshi el d {
Vehi cl eBodyW ndshi el dFront Front = 1;
Vehi cl eBodyW ndshi el dRear Rear = 2;

}

message Vehi cl eBodyLi ghts {
bool |sH ghBeamOn = 1;
bool |sLowBeantn = 2;

bool |sRunningOn = 3;
bool |sBackupOn = 4;
bool |sParki ngOn = 5;
bool |sBrakeOn = 6;

bool |sRearFogOn = 7;

bool |sFrontFogOn = 8;

bool |sHazardOn = 9;

bool IsLeftlndicatorOn = 10;
bool IsRightlndicatorOn = 11;

Protobuf as definition of serialization
The above is essentially describing the VSS data tree / catalog and is very similar to the definition of the full tree in GraphQL as can be seen here.

Alternatively we can focus on the serialization aspect. This is to define the exact payload in a generic communication protocol - e.g. MQTT which
describes the transport and topic structure, but does not in itself define the payload format. A definition of what is actually transferred on topics is required:

The page Data serialization / value formats gives a high-level proposal for message types that are needed in a typical generic data transfer protocol.

https://wiki.covesa.global/pages/viewpage.action?pageId=12124406

Another option is to mirror the message structure of the VISS web protocol specification. Message types are described in the JSON Schema in the
Transport Specification and this "schema" could be described using Protobufs.

Ti mest anpedRecor d:

nessage Ti mest anpedRecord_ui nt 32 {

string ts = 1; # Zulu tine, SO std with mcroseconds

uint32 value = 2; # (with specific uint32 type -- only valid for signals of that type)
}

O alternative that can encode nmultiple value types:
nmessage Ti nest anpedRecord {

string ts = 1; # Zulu tinme, 1SO std with mcroseconds

googl e. prot obuf. any value; # There is a default "any" type defined by protobuf named googl e. protobuf. any but
it mght not be the only choice

}

message Ceospati al Record {
GeoPosi tion pos;
Ti neSt anpType ts = 1; # Sone efficient time stanp type? Zulu tine, 1SO std with m croseconds
googl e. protobuf. any val ue; # Val ueType needs to be a union/any/variant type.

}

Just a proposal for a GNSS position type:
message GeoPosition {

float latitude = 1;

float |ongitude = 2;

float accuracy = 3;

}

VISS message format mirrored in protobuf

VISS schema includes a lot of parts, some that seem optional (descriptions etc.)? There is also some hierarchy that could be included, or flattened.
In this example the hierarchy is roughly the same, the subtype "dp" is included and it encompasses the value and time stamp.

message VI SS_dat a_nessage {
string path = 1;
dp_type dp = 2;
Other optional parts? Description, properties ...

}

nessage dp_type {
googl e. prot obuf . any val ue = 1;
string ts = 2; # Also here, a nore efficient tine stamp type??

https://github.com/w3c/automotive/tree/gh-pages/spec
https://raw.githack.com/w3c/automotive/gh-pages/spec/VISSv2_Transport.html#json-def
https://raw.githack.com/w3c/automotive/gh-pages/spec/VISSv2_Transport.html#json-def

	CVII Tech Stack technologies - Protobuf

