
IoT-event-analytics and Vehicle-Edge projects

Git repositories (unmaintained, see above): , .iot-event-analytics vehicle-edge

Announcement about this significant open source project creation initiated by Bosch can be found in this blog post

What this page contains:

 Collect detailed information about the IoT-event-analytics and Vehicle-Edge projects to explain the different components they are made up of.

:Purpose

After understanding these projects in detail we can build a full plan for the desired CVII Technology Stack, using the components of these projects as a
foundation and combined with other components.

Overview:

The projects implement a high-level vehicle data abstraction strategy as follows:

The framework's main purpose is to allow vehicle applications to communicate with each other, and with vehicle platforms, using a common data model,
here implemented with the VSS.

November 2021 - the development of these frameworks was halted. Suggestions made to the Bosch developers to consider building on top of
existing frameworks such as , that might provide similar functionality.DAPR

https://github.com/COVESA/iot-event-analytics
https://github.com/COVESA/vehicle-edge
https://wiki.covesa.global/pages/viewpage.action?pageId=364317
https://github.com/GENIVI/iot-event-analytics
https://github.com/GENIVI/vehicle-edge
https://dapr.io/

The abstraction layers of app to platform in more detail:

The platform is useful for processing data before it is transferred to cloud infrastructure, thus being part of an edge-processing strategy. The vehicle is
then considered an edge device.

IoT-event-analytics

IoT-event-analytics (a.k.a. IOTea) implements an event processing and agent network platform. It orchestrates the flow of events between communicating
agents (Talents) where the business logic of that interaction can be programmed using several different languages.

Vehicle-Edge

Vehicle Edge sets up a complete software stack around IOT-event-analytics by adding services such as an MQTT broker, and other components. Vehicle-
edge uses containers to set up a network of communicating parts.

Details / analysis
UML model overview (provided by Bosch)

The docker compose file of vehicle edge shows the following dependencies (which order containers must be started)

blocked URL

Containers overview and quick references

https://www.plantuml.com/plantuml/svg/TP71Ze8m48RlFCL43fuWnX25YqbXmt5VOBE71WPiB6qNAXVZk--qAEZgpgNDFzzCf_yeNIECU1ILn0Zh5e4FC7OaXeKFk0H0qVIyGrWLMbak5FPGeq5Lewe43YjND15XumCkuCjSV7Lw-3aBQtNKOwSjVZkyepk4UPvbQVeEbRhYSYBfwgPXRBzVo4ghHhGTLxp5tdDEWR2aoBA7ruqmA6bapnZfY3n_x7GwdmOUZRVNw8GmIHZBymKPXs4hQ78-8Li18MDfMfOBSkGo4ifYt_0A8rvpOszpKKOql8RmWsAtWtzg5jOrBueaMK2BWuqibwYinwnrts2RJJ4pmNewFsbCiDg0Rjuvl_3tonhUBtKX_0BYiuaEVckpxWsF3pu_Y-JmX9AHhw8hcLNdOzoBzcWfO-Ip_jpWxk5hw-UC-PDmVMx4d23pufcyGd0DVW40

Container
name

Purpose

 These descriptions need to be checked and updated by Bosch

Container image /
Dockerfile

Original
source
code

Hal-interface This typically collects signals from a low level vehicle-specific signal source such as CAN bus. For each technology, a
different hal interface can be provided.

Hal-interface-
adapter

This implements the necessary translation from the specific signal interface to the standard one used in this framework
(VSS).

(In CCS terms these have been referred to as "vss-feeder" components, something that feeds the system with VSS formatted
data, from some source, that might not be VSS formatted, i.e. a translation occurs)

test-talent Shows an example of a "talent" i.e. a cooperating agent in the system. A talent is....

pipeline Main component of IOT-event-analytics? - details TBD built from pipeline
/Dockerfile.amd64

configmanager Setting up the system together with pipelines? - details TBD Written in

kuksa-val Keeps the current value store and sits between VSS2IOtea and the hardware-specific parts. Kuksa.VAL exposes data using
the VISS protocol (v1, websocket) , but also provides other protocols like MQTT.

amd64/kuksa
imported from Jenkins build
server
e.g. kuksa-val-<hash>-

 amd64.tar.xz

mosquitto-
remote

mosquitto-
local

MQTT brokers (well-known implementation and not unique to this project). built from mosquitto
/Dockerfile.amd64

platform = ? Only an adapter between VISS and IoTea. built from platform
/Dockerfile.amd64

vss2iotea built from kuksa.val2iotea

 /Dockerfile.amd64

Software Components (not always 1-to-1 mapped to a container)

Software
Component
name

Provided interface Link to source
code

Programming
language

Other info about framework/environment

(these names
might need update)

(is it a library with a header file, a process exposing a socket, a
REST Web API, another well defined protocol)

(important libraries/frameworks/technologies used beyo
nd the choice of programming language)

Hal-interface

Hal-interface-
adapter

test-talent

pipeline

configmanager (source code in iot-
)event-analytics

Javascript (Node
JS)

kuksa-val () (git-repository rele
)ases

mosquitto ()git repository C

platform = ?

vss2iotea Javascript (Node
JS)

File/storage mappings

For convenience, each container maps a config file or directory to a location in the host file system, so that the configuration can be conveniently edited.
With few exceptions, each container only sees its own config location and do not share any storage:

A starting example of all configurations .is provided

blocked URL

Interfaces and behavior

From the fact that these components are executing in different container namespaces and do not share storage, we can derive(?) that interaction between
the parts are all using network protocols.

https://github.com/GENIVI/iot-event-analytics/blob/develop/docker/pipeline/Dockerfile.amd64
https://github.com/GENIVI/iot-event-analytics/blob/develop/docker/pipeline/Dockerfile.amd64
https://kuksaval.northeurope.cloudapp.azure.com/job/kuksaval-upstream/job/master/lastSuccessfulBuild/artifact/artifacts/kuksa-val-722738d-amd64.tar.xz
https://kuksaval.northeurope.cloudapp.azure.com/job/kuksaval-upstream/job/master/lastSuccessfulBuild/artifact/artifacts/kuksa-val-722738d-amd64.tar.xz
https://github.com/GENIVI/iot-event-analytics/blob/develop/docker/mosquitto/Dockerfile.amd64
https://github.com/GENIVI/iot-event-analytics/blob/develop/docker/mosquitto/Dockerfile.amd64
https://github.com/GENIVI/iot-event-analytics/blob/develop/docker/platform/Dockerfile.amd64
https://github.com/GENIVI/iot-event-analytics/blob/develop/docker/platform/Dockerfile.amd64
https://github.com/GENIVI/iot-event-analytics/blob/develop/docker/kuksa.val2iotea/Dockerfile.amd64
https://github.com/GENIVI/iot-event-analytics/blob/develop/docker/kuksa.val2iotea/Dockerfile.amd64
https://github.com/GENIVI/iot-event-analytics/tree/develop/src/core
https://github.com/GENIVI/iot-event-analytics/tree/develop/src/core
https://github.com/eclipse/kuksa.val
https://kuksaval.northeurope.cloudapp.azure.com/job/kuksaval-upstream/job/master
https://kuksaval.northeurope.cloudapp.azure.com/job/kuksaval-upstream/job/master
https://github.com/eclipse/mosquitto
https://github.com/GENIVI/vehicle-edge/tree/develop/docker-compose/config
https://www.plantuml.com/plantuml/svg/bPBDRjim3CVlVGgYlcm78KKGjCdHzf2NA7PWRJaLgWzFedCf-kwZ9DSoYcppU355_VKZJTAwNi9LlgfEIo7xYmGCS3KShDfay7u7R8D78-6-TPPGMUdXHTbU63TP2l2jStPGbyaZAMU_tqT6Vb0DoU0T4YNQit7XrwI8dF3IE98_ezom3rNJd4x7uosfTXtgh6Gt5bVNJqz5cIimQF4YVTB525HdjjDfbNrKezJy1qapwgXecZNfRNeBAAvpDlv2TJZKTTCKoJM4lUBACKls2ggwFXxFvo9vHIsK9Ua7xAJ07aUQw-8RDM0FrG-snqVumvkYZV2sFHoAa6GWGQYbfIGZYhzHFpoqYsPnUYHymS2ps-KUxPQcxdB_qxWwuvSdx8CGQIJ_nqj3cd5wXTC9nxTRSDnOCMgamNcJMHmPXu9BnqWSzOrWf6n9mpFCT7OAXWyHmbFVo8XxC7FsQiNXdOYSLUmld9lBagdpjXJov_em_UlTrWmhyXVkGjt2p0ieyYapYGgGbv9fgyY_KS5D_hCyMas5mepwkFiD

More analysis is required on what APIs are provided by each and how communication occurs:

blocked URL

Kuksa.VAL exposes the VISS protocol and this is the main "API" for others to interact with Kuksa.VAL

TODO: Determine the (network?) protocols. Specifically, what functionality does each component provide and consume?
 And which component communicates with which other one?

Referring to the UML diagram above:

Most components in the framework communicate internally using MQTT taking advantage of the pub/sub capability so that every component has access to
the information it needs. To fully track the actual communication flow it would be required to see which topics are published and subscribed by each
component.

VISS is an protocol that is provided to external clients by KUKSA.VAL.

Vehicle applications are (in UML overview) described as communicating with the framework using MQTT.

Questions

This needs to be installed from tar-file? IOTEA_JS_SDK=boschio.iotea-0.2.1.tgz

https://www.plantuml.com/plantuml/svg/ZP71ReCm38RlUmghd2En3hNXD0McIhljFarJ1A6D6W85bqjVVawWXAsTDbzgxE__uzgsAHKCwg0BevWgzmfa3qDDnIZt0PS7eAWwMIjOvOr5gQtgG5jKNIKBrQ-SPEn7bG-uW1UvUA-R_dJMY0thLDsW-d1uJJb4MPQcdDz3JLD8CvAKkbc4s6u3MJIsqljQMhbNdUTS1Q8THPekNczrgmmDx9dME2BBbax7yx6NR9XUer-8aaI8B0l8qFThJPFB4LbhY8JWVBSBo44QDc-4oLAsECr57Lt94g8NYiq6Vj44rfddUP8445MF3ALH5Zs6wFw6YEDyPkQaFY5-FdAU06D-opUT9z-XhTwAvsbW9TvUeR70Onxx-sgN1T1zEH-tzNlovr7Kcj2avPDWMRdpMXfFIZf40DrLIFkj5iHpUfMkzK9ArtBIPUrtwNIiW5wlHnOtlJziVfZC5lynG0mKNPkaYqf8lW00

	IoT-event-analytics and Vehicle-Edge projects

