
Vehicle Service Catalog (VSC) - Common Interface
Description Model

Weekly Meeting
Recorded Meetings

Overview
Mission
Presentations from April 2022 All Member Meeting
VSC And VSS Alignment
October 2021 AMM Presentation - Excellent Background on Current Thinking

Ongoing design/discussion points
Frequently Asked Questions:
References, previous presentations...
Deployment:

Weekly Meeting
VSC weekly development meeting: Meeting Link

Recorded Meetings

You will find recorded meetings .here

Overview

Mission

Create a standardized, extensible vehicle service catalog, and associated tools, to enable protocol-, language-and specification-agnostic interoperability
between ECUs, infotainment, and cloud.

Standardized – Version managed service specification with regular releases
Extensible – Proprietary extensions can be added to an open-standard catalog
Tools – Auto-generate network code and APIs from service specifications
Specification agnostic – Translation to and from multiple specification formats
Interoperability – Enable seamless communication in the vehicle and over the air

Presentations from April 2022 All Member Meeting

https://us06web.zoom.us/j/83163225072?pwd=dEVZOUdua2hvZ1JGTEZqUFJDdC9TQT09
https://wiki.covesa.global/display/WIK4/VSC+Meeting+Recordings

VSC And VSS Alignment

October 2021 AMM Presentation - Excellent Background on Current Thinking

Ongoing design/discussion points
For details it could be best to track the in and GitHub issues VSC VSC-tools

Stakeholder input: #1 preferred source-language for interface descriptions. e.g. Franca IDL or other, or do companies use gRPC directly, etc.?
Stakeholder input: Interesting mapped technologies, input-and-output formats and bindings. (e.g. gRPC, SOME/IP, DDS, HTTP/REST based
remote procedure call protocols, ...)
How to reference VSS signals in VSC model
Error handling feature built in

Build in some support for success/error return
Note: Method invocation errors that are related to the particular target/protocol are separate from this mechanism. Those are defined in
target/protocol separate specification.
Example: "method name not found" on a web request.
Support a global error type enum. Configurable. More than one.
Specify which errors are expected/applicable per method
Error feature is optional but best-practice. Out-parameters still exist of course, and can be (mis)used to report invocation success
Next: Make syntax proposal. Consider is this feature reasonable to translate/map to all IDLs, target environments that we
envision. How is it mapped?

Franca <-> VSC YAML mapping
document, compare keywords

Franca further development to a "next version"?
Interesting if desired new features are not covered. E.g. error-feature might be one such thing.

Set up documentation on GitHub Wiki instead, or as a complement
Terminology, names. Coin a useful name for the "VSC IDL language"
Review OpenAPI, AsyncAPI, gRPC/protobuf, Franca, etc. for syntax similarity (names of things) and feature coverage. Find alignment
oppportunities.

One stakeholder suggested: Could OpenAPI be extended to cover non-REST. I.e. "OpenAPI-next" == VSC language? Rationale:
OpenAPI known outside automotive.

Frequently Asked Questions:

Why another IDL?
Why is adopting <insert existing choice> not enough? Or is it?Several answers can be found in previous presentations/slide decks

References, previous presentations...

COVESA All Member Meeting

Deployment:

VSC Deployment - Containers

Jump to 8:04 for VSC. Confluence won't let you embed a YouTube link with a start time.

https://github.com/GENIVI/vehicle_service_catalog/issues
https://github.com/GENIVI/vsc-tools/issues
https://wiki.covesa.global/display/WIK4/COVESA+All+Member+Meeting
https://wiki.covesa.global/display/WIK4/VSC+Deployment+-+Containers

	Vehicle Service Catalog (VSC) - Common Interface Description Model

