
Defining the COVESA data modeling strategy and its
associated artifacts

Current setup (summary)
Current setup (description)
Proposal overview (summary)
Proposal overview
(description)

[1] - Generalise the
current data modeling
approach used in
VSS to make it re
usable when needed

[1a] -
Generic
YAML-
based tree
modeling
approach
(one
hierarchy)
[1b] - Rule-
set for a
new tree
model

[2] - Extend the tools
to use standard data
exchange format and
to allow the
construction of
custom schemas

[2a] - A
standard
data
exchange
format
[2b] - Allow
the
construction
of custom
schemas

[3] - Publish the
COVESA tree(s) with
standards and future-
proof name spaces
[4] - Use a COVESA
tree to automatically
feed one hierarchy of
a domain ontology

[4a] -
Domain
ontology
[4b] -
COVESA
core
ontology

Implications (summary)
How to move forward?

Use a methodology
suitable to design a
solution

This page describes the proposal to restructure the data modeling activities within COVESA. First, the
current state is presented to provide the necessary context. Then, the proposal is introduced.

Current setup
(summary)

As of today (05.2023),
COVESA's data modelling
activities focus mainly on VSS.
VSS is the conceptual model
for the description of vehicle
properties in a high-level of

Current setup (description)
So far, the data modeling activities in COVESA have been primarily centered on the continuous
development and maintenance of the Vehicle Signal Specification (VSS) and the tools that parse VSS
into different formats. In the current setup, there is no clear description of what requirements (i.e.,
functional and non-functional) are driving the design of the data model. It seems that the primary purpose
of VSS is to serve as a naming convention for the properties of the vehicle. Nevertheless, there is little
attention given to the separation of concerns:

Disclaimer

This proposal is just that, a proposal. So, contributors are very welcome. If any ideas or
assertions presented in this draft are incorrect, do not hesitate to share your own view by
commenting on the page or contacting the author (). The principal intention of Daniel Alvarez
sharing these ideas is to find synergies and joint agreements on the best possible next steps
for the data modeling group. In this sense, I tried to point out aspects where I believe there is
room for improvement with as much constructive criticism as possible.

https://github.com/COVESA/vehicle_signal_specification
https://github.com/COVESA/vss-tools
https://github.com/COVESA/vss-tools
https://wiki.covesa.global/display/~Daniel.Alvarez-Coello@bmwgroup.com

abstraction (i.e., friendly for
non-experts).
VSS-tools complement VSS
by providing the scripts that
parse the specification into a
few standard formats.
Pros

Easy to understand
and contribute to.
Simple YAML files
with custom
constructs.
VSS model
constantly maintained
Naming convention.

Cons
The specification of
the data model is not
represented in a
standard data
exchange format
(only after parsing it
using the tools).
One tree covers only
one hierarchy.
No clear definition of
the scope. That is,
where does VSS end
and something else
start?
No clear distinction
between conceptual
and application areas.
Most of the attention
is given to the leaves
of the tree, while no
rule-set is in place to
control how the
information is
classified in different
branches.
A few misleading
terms are used. For
example:

Using
"Signal" to
refer to
dynamic
data
properties of
the vehicle (i.
e., a signal
is the
information
carrier that
can have
one or
multiple
properties,
and it
occurs at a
lower layer
of
abstraction
than what
VSS
defines).
Saying that
VSS is a
"Taxonomy"
when the
implicit
relationship
of the
concepts in
the
hierarchy is

On the one hand, there is the "conceptual area," where the controlled vocabulary has to be
described and adequately documented. Data models belong to this area because they define
the entities of interest in a particular domain and the possible relationships between them.
On the other hand, we have the "application area," where a data model is used in specific
implementations (e.g., databases, applications, etc.).

The figure above shows how VSS modeling belongs to the conceptual area. To use the specification
described in VSS (i.e., a "vspec" file), one has to parse it into a specific format (e.g., JSON) by using the
VSS tools. The tools are the mechanism that makes the VSS data model usable in the application area.
From the practical point of view, the application area needs a specific schema that determines the
structure in which the data is to be stored. In this context, we mean long-term storage (e.g., a database)
or short-term storage (RAM and variables' allocation during application execution).

In the current setup, the whole data model is taken one-to-one and parsed as the schema for the
application area. Then, it is up to the specific implementation to use custom mechanisms to ignore the
overhead when only some concepts defined in the data model are required or used. Although this aspect
has shown no significant limitation until now, it becomes relevant when multiple domains are involved.
Therefore, with the increasing interest in adding other domains apart from vehicle-specific data, it is
crucial to define a data modeling strategy that can scale beyond tree hierarchies and vehicle-specific
data.

One may argue that, with the current setup, it is also possible to describe a customised shorter spec file
or use functions (e.g., overlays) to define the specification that matches the needs of the application
area. Although possible, that implies creating disparate data models. Ideally, the concepts should be
modelled only once in the conceptual area to serve as a controlled vocabulary. Then, an arbitrary
selection of the concepts and some modifications to the constraints (e.g., min, max, etc.) can deliver the
schema needed in specific use-cases, without affecting the standard definition of the concepts. Hence,
the following section propose a few specific tasks to improve the data modeling workflow.

not a sub
classification
.

Proposal overview
(summary)

Unique and standard
definitions in the conceptual
area, and arbitrary selection in
the application area
Suggested tasks to address:

(1) Generalize the VS
S approach to model
one tree-like
hierarchy, so that
another modelling
group can reuse it
when convenient
(inside or outside
COVESA).

Inside
COVESA,
the definition
of a new
tree only
would take
place when
an specific
rule set is
fully
satisfied.

(2) Keep using the
YAML format for the
further specification
of the domain
hierarchy, but extend
the tools to first
translate the YAML
into the RDF
standard data
exchange format (i.
e., publishing the
specification in RDF
+ SKOS). Some
advantages include:

Unique
identification
of resources
Interoperabili
ty
Machine
readable
format
RDF
libraries
available in
multiple
programming
languages
RDF data
can be
queried with
SPARQL
Facilitate the
integration
of multiple
hierarchies
because
OWL
ontologies
are built on
RDF data,
so the tree
hierarchy
can

Proposal overview (description)
The idea is to define the data modelling workflow for COVESA in terms of the conceptual area (i.e.,
development and maintenance of the controlled vocabulary) and the application area (i.e., tools that
construct a usable schema out of the data models for a particular use case).

In the , there should be a clear step-by-step guide on how to work with two conceptual area
different levels of expressiveness. This consideration is needed because a tree hierarchical
model alone (what VSS has been so far) is not the best model type to handle some upcoming
needs, such as data integration. Hence, the model might be selected depending on the user
needs.

(less expressive) Tree hierarchical model, good for:

Information classification according to a given criteria (e.g., taxonomy, merono
, custom tree.)my

Naming convention following a dotted notation (i.e., concatenation of the
branches)

(more expressive) Ontology, good for:

Data integration
Concepts re usability
Reasoning
Multiple hierarchies
Knowledge representation

In the , the tools have to provide a mechanism to "cherry pick" (i.e., to arbitrary application area
select) concepts of interest from one or multiple domains, including the context and pointers to
the uniquely identified definition of the concepts.

In other words, the proposal is not to enforce the use of ontologies. It is rather providing a common
agreement on how and when to use what data model. The idea is better explained with the following
figure, which is explained below:

[1] - Generalise the current data modeling approach used in
VSS to make it re usable when needed

Regardless of the level of expressiveness selected by the end user, the data models
developed and maintained by COVESA should use a common standard data exchange
format. This standard representation of the data models will facilitate the transition from and
inter operability between trees and ontologies.

As reported by experienced data modellers [R1], the current preferred data exchange format
for tree-like models is and standards. However, the current VSS tree is published RDF SKOS
with a custom YAML `vspec` file that requires the tooling to parse it.

Luckily, the RDF data model is also the foundation for the Web Ontology Language (OWL).
Hence, there is a good opportunity here to harmonise the activities by using a common data
model and vocabulary.

https://www.w3.org/TR/rdf-concepts/
https://www.w3.org/2004/02/skos/

contribute to
it.
Taxonomy
editors and
other tools
can import
RDF data
with SKOS
concepts in
it directly.

(3) Publish the
COVESA tree(s) with
standards and future-
proof name spaces.
(4) Use the COVESA
tree(s) as a
continuous feed for
one hierarchy of a
domain ontology.

Model in the
COVESA
ontology the
concepts
that are of
common
interest and
that involve
the
integration
of multiple
domains:

Wh
at
is
an
eve
nt?
and
wha
t
type
s of
eve
nts
ther
e
are,
for
exa
mpl
e:

EV charging session
Car crash
Driver commutes from private car to public transportation using a parking spot at a park & ride site.
etc.

The simplicity of VSS has proven to be a successful approach for the continuous contribution of Subject
Matter Experts (SMEs); just by modifying a text file, discussing the changes, and creating a pull request.
The approach itself should be generalized to serve as a guideline to describe and maintain one
hierarchy. The idea here is to abstract the modelling approach used in VSS and describe it with generic
terms that might be re used with other domains. This implies doing some minor adjustments to geralize
the YAML-based modeling approach, and also defining a rule set to support COVESA participants to
identify the need of a new tree model.

[1a] - Generic YAML-based tree modeling approach (one hierarchy)

People often refer to a hierarchical tree data model as a taxonomy. However, this is not always the case.
Depending of the meaning of the implicit relationship between branches of a tree, the hierarchy can be:

Tree hierarchy
type

Implicit relationship Example

Taxonomy ChildBranch -- -->Sub class of
ParentBranch Vehicle

Car

Private car
Company car

Plane

Commercial
plane

Train

meronomy ChildBranch ParentBranch-- -->Part of
Vehicle

Wheel

Tire
Brake

Custom ChildBranch ParentBranch-- Custom --> VSS

To handle these semantic differences, the following tasks are proposed:

Add a field at the beginning of the tree specification to explicitly state the tree type

To include at the top of the spec YAML file (the root branch)
tree type as one of ['TAXONOMY','meronomy','CUSTOM']

Extend the tools to interpret the tree type as follows

Tree
type

Tools will consider... If custom relationship is needed...

TAXO
NOMY

the "SubClassOf" as the default implicit
relationship between branches

the user can define it within the branch
definition.

meron
omy

the "PartOf" as the default implicit
relationship between branches

the user can define it within the branch
definition.

CUST
OM

that no default implicit relationship exist. in this case, it will be mandatory for all
branches in the specification

Add a field in the branch definition to explicitly state the to the parent branchimplicit relationship
Example of a branch that has a custom relationship
PowerTrain.Charging:
 type: branch
 description: Properties related to battery charging.
 relationToParentBranch: ' 'functionOfVehicleComponent

https://en.wikipedia.org/wiki/Taxonomy
https://en.wikipedia.org/wiki/Meronomy

[1b] - Rule-set for a new tree model

Having an stablished approach to model a tree hierarchy does not mean that COVESA should motivate
the arbitrary creation of multiple trees. Data modeling is a continuous design task that requires several
iterations and a huge maintenance effort. Therefore, it is essential to define a simple set of rules that are
to be satisfied before starting a new data tree that is to be developed and maintained by COVESA. Such
a rule set can include, for example:

There must exist the proven need for at least 3 branches.
Each branch must have at least 2 leaves.
The implicit relationship between consecutive branches must be documented.
There must be no cross references to other existing data models.
Branch names must use this XYZ format
There should be at least 2 people responsible for the organization and maintenance of the model
etc.

[2] - Extend the tools to use standard data exchange format
and to allow the construction of custom schemas

Tools should be extended to use standards for the specification itself, and also to be able to arbitrarily
construct the desired schema.

[2a] - A standard data exchange format

Current VSS-tools allow parsing the specification into multiple formats. The specification itself is done in
the custom YAML file (i.e., with the vspec format). This is not an standard data exchange format. It is a
good practice to specify taxonomies (and similar hierarchies) using standard formats [R1]. Two important
reasons for that are interoperability, and re use of existing tools for editing and visualising the data
models.

Here, the most prominent standards that are preferred today for these taxonomy-like data models are the
Resource Description Framework (RDF), and the Simple Knowledge Organization System (SKOS).

[2b] - Allow the construction of custom schemas

The idea here is that a data model can contain much more concepts that the application area needs. This
is because the application area might consist of multiple use cases. In principle, the idea here is to keep
to the number of data models to maintain by COVESA to the minimum. Hence, a mechanism to construct
custom schemas will decouple the need for the modification of the model.

[3] - Publish the COVESA tree(s) with standards and future-
proof name spaces

Right now, the specification has a practical use after applying the vss-tools. The main identifier of a
concept of interest (i.e., a tree leaf) is either the path defined with a dotted notation, or the UUID
introduced recently. None of them is fully solving the identification of the resource.

The paths require a custom script that interpret them in other to do the mapping, whereas the current
UUID approach does not guarantee that the identifier will remain unchanged when the path changes (e.
g., a branch name change will lead to a different UUID).

The idea here is to take advantage of the principles of the RDF, which is the identification of resource in
the web. For that, one must define a so called name space that will act as the address where the model
is stored (hopefully forever). For example:

@prefix vss: http://covesa.global/datamodels/vss# .

[4] - Use a COVESA tree to automatically feed one hierarchy
of a domain ontology

This is the entry point for ontologies. The main limitation of a tree is that it can only handle one hierarchy.
In the real world, however, the knowledge looks more like a semantic network than a simple tree.

[4a] - Domain ontology

We can take the advantage of a well-maintained tree to further enrich the vehicle data model. For
example, a domain ontology can be useful for:

Say something about the branches of the tree, and how they relate to other domains
Production information of a particular vehicle component

Material
Place
Manufacture data

Connect vehicle data to other areas
Smart city
Traffic management

Connect the VSS high-level view to the low-level data of the vehicle electronic system.
etc.

[4b] - COVESA core ontology

Once multiple models are involved, we must keep them inter operable. That means that we need to also
have a controlled vocabulary to categorise new concept of interest into abstract and generic categories.
For example

A ChargingSession is an Event
Then the concept of an Event is modelled in the COVESA core ontology

The same applies for other common concepts like time, colours, etc.

The systematic use of these controlled vocabularies will lead to an easy data integration.

Implications
(summary)

VSS approach of modeling
things is maintained and
reinforced with minor changes
Tree models (the
specification) are exposed
with standards that allow
machines to read it directly
Trees and ontologies share
the same foundation, RDF.
COVESA has to decide the
name space to store the data
models forever.
Use-case needs can be
satisfied by cherry picking
existing concepts from
multiple domains.

How to move
forward?

Comprehensively describe the
aspects that are driving the
design of each of the artifacts
that are (or will be) part of
COVESA.

Use a methodology suitable to design a solution

Designing an artifact that solves a problem can lead to multiple valid solutions. Therefore, a simple and
clear methodology to guarantee the validity of the proposed solution must contain at least these 4
elements (adapted from [R3]):

Further references and recommended
reads

[R1] H. Hedden, The accidental taxonomist, Third edition. Medford, New Jersey: Information
Today, Inc, 2022.
[R2] P. Alexopoulos, Semantic modeling for data: avoiding pitfalls and breaking dilemmas. O’
Reilly Media, Inc., 2020.
[R3] R. J. Wieringa, Design Science Methodology for Information Systems and Software
Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. doi: 10.1007/978-3-662-
43839-8.

	Defining the COVESA data modeling strategy and its associated artifacts

