
Towards CVII pluggable components
Introduction

Looking at the CVII tech stack landscape (which includes input from multiple projects led by companies and organizations) I see a lot of diversity. Some
diversity is good but it appears a bit disorganized.

Goal setting

Aim to produce PoC to prove and test out uncertain areas
Aim to produce close to production-ready implementations for areas that are not uncertain
Agree upon requirements for real-world (production) usage

Preferred technologies, programming languages and runtimes
Non-functional requirements (performance, environments)
Development support requirements (CI / static-analysis tools, etc.)
Quality improving requirements (testing etc.)

Are current implementations too monolithic?

Can we build an ecosystem of pluggable components (as discussed many times), and in the process accelerate the creation of complete systems as well?

Current challenges

(discuss)

- Not a clear enough focus on reusable components.
- A wide diversity of programming languages and runtimes
- Not identifying what the requirements are for production-level code
- Not identifying where we have "formal" (defined/documented) interfaces as opposed to internal interfaces.

I'd like our community to start discussing some of these aspects to build a more homogeneous approach to the development.

 Questions
(answer / discuss)

A) Have we agreed on the list of required components, their responsibilities and interfaces?

Tech Stack overview

B) What, in your view, are acceptable choices (and preferred choices)
 for programming languages and runtimes:
 - In-cloud
 - In-vehicle

Today's
ECUs

Next-stage ECUs (domain controllers,
central computers)

Cloud (computers
not in-vehicle)

Development tools, code-
generators, converters etc.

"Vehicle cloud
computing"

(think about
next-next gen)

Python

Go

C

C++

Rust

Javascript /
NodeJS

Java

.NET, C#, ...

Haskell,
Erlang, ...

https://at.projects.genivi.org/wiki/display/DIRO/CVII+Tech+Stack

C) In existing architecture pictures (e.g. CCS), and framework implementations (e.g. iot-event-analytics/vehicle-edge/KUKSA.val, AOS) which interfaces:

 - are documented ?
 - need to be documented ?
 - do NOT need to be documented (= internal / implementation detail) ?

Inspiration from these architecture pictures and other pages:

CSS client / WAII server image in README
CCS Reference Architecture
Analysis of IoT-event-analytics and Vehicle-Edge projects

Completion of technology definition / implementation

Component Name Programming language / runtime Required/consumed interfaces Provided Interfaces

Kuksa.VAL: Python Uses various bindings, socketCAN, ...
VISS-like interface also for writing data into
KUKSA?

VISS protocol(?)
other?

VSS Feeder (multiple) = StateStorage db interface depends on input type (CAN,
etc.)

State Storage SQLite database - SQL

OVDS Client (ccs
client)
()repo:ccs-w3c-client

Go VISS protocol

OVDS Server
()repo:ccs-w3c-client

Go = StateStorage db interface

(CCS): LiveSim
()repo:ccs-w3c-client

Go Data in OVDS Database format

WAII:Service
Manager

Go (internal) (internal)

WAII:Server Core Go (internal) (internal)

WAII:AGT Go - (internal) HTTP?

WAII:AT Go - (internal) HTTP?

WAII:MQTT Go (internal, VISS-like communication) -

WAII:WebSocket Go (internal, VISS-like communication) -

WAII:HTTP Go (internal, VISS-like communication) -

OVDS Database SQLite. Probably should be production-level time series
database

https://github.com/GENIVI/ccs-w3c-client/blob/master/README.md
https://at.projects.genivi.org/wiki/download/attachments/52723955/genivi-communication-framework.jpg?version=1&modificationDate=1622472089000&api=v2
https://at.projects.genivi.org/wiki/display/DIRO/IoT-event-analytics+and+Vehicle-Edge+projects
https://github.com/eclipse/kuksa.val/
https://github.com/GENIVI/ccs-w3c-client
https://github.com/GENIVI/ccs-w3c-client
https://github.com/GENIVI/ccs-w3c-client

	Towards CVII pluggable components

