AMM 202404 Technical Track Session Proposals ## Session Proposals This is for Technical Session Presentation Proposals. | Proposed
Topic
/Session Title | Abstract | Requested
Duration | Requested
Day | Proposed
By | Comments | |---|--|-----------------------|------------------|--|---| | Extending VSS
To Commercial
Vehicles | VSS has historically focused on passenger cars. This session intends to discuss various options for extending VSS to better support commercial vehicles, including • Adding new signals to standard VSS signal catalog • Adding an "official" VSS overlay for commercil vehicles • Private/OEM-specific overlays • Using HIM to specify additional independent trees for for trucks, trailers, etc. • Q & A | | | Erik
Jaegervall | Possibly joint
sesssion Ulf
Bjorkengren
and Erik
Jaegervall
HIM or
Overlays?
depends | | VSS in AGL | Need to discuss with Automotive Grade Linux guys, but they did have a fancy VSS based demo and they have some tech information about that. They might come or give me slides. The interesting thing is, that on the one hand it is a bit more of an end2end use case, but at the same time freely available | | | Sebastian
Schildt | | | Learning
VSS: A Deeper
Dive | Taking the next steps with your understanding of VSS. Learn from the pros as they walk through some how-tos. Get your questions answered and learn how to get involved. | | | Sebastian
Schildt
Adnan Bekan
Erik
Jaegervall | | | VSS Format and
Tooling | | | | Erik
Jaegervall | Parts of
general VSS
working
session | | VSS-
Collaboration
/Competitor-
landscape | | | | Erik
Jaegervall | | | COVESA
repositories (i.e.
not only VSS) as
open source
components | Our current approach concerning governance, OSS scans, IP scans, headers/footers Our current approach concerning license (like MPL vs Apache) Discussion – what is needed to simplify inclusion/usage in downstream /proprietary projects. Implications of AI, CoPilot and so on I.e. is there any artifacts or files that members needs | | | Erik
Jaegervall | | | New features
proposal for next
version of
VISSv2 | New features are proposed for the development of the next version of VISSv2. | 30-45 | | Ulf
Bjorkengren | Interface Pillar | | VISSv2 consent
model explained
and demoed | The newly added consent support in VISSv2 is explained, and a demo is jointly presented by Ford and Aiden Automotive Technologies. | 60 | | Ulf
Bjorkengren
Aiden: Niclas
/Sinan | Architecture
Pillar | | Feeder domain
conversion
explained and
demoed | The design and implementation of the mapping and scaling process of data transitioning between a northbound "VSS domain" and a southbound "Vehicle domain" is presented, together with a demo where it is used to actuate signals on a Ford vehicle. | 60 | | Ulf
Bjorkengren
Cem Mengi,
Ford | Architecture
Pillar | | Introduction to
the Central Data
Service
Playground | This session is intended to give a high level introduction to the Central Data Service Playground. A neutral playground to investigate internals and combinations of data services on and off of the vehicle in the context of datacentric architectures. We will cover the "What?" and "Why?" of what it is and why it exists. | 30-45 | | Stephen
Lawrence on
behalf of the
Data
Architecture
group | | | Technical
overview of the
Central Data
Service
Playground | We will follow the previous session introducing the Playground, with a more technical overview. Covering the "How?" of how it is currently implemented and what the roadmap/backlog looks like. | 30-45 | Stephen Lawrence on behalf of the Data Architecture group | | |---|---|-------|---|---| | Using the
Central Data
Service
Playground | Having given an high level summary of What, Why and How? in the two previous sessions, in this session we turn to using the Playground. Some areas the Data Architecture group wants to explore and how the Playground may be used by the wider eco-system as a "lego piece" to investigate and illustrate. | 30-60 | Stephen Lawrence on behalf of the Data Architecture group | | | CV PoC | Limited, visualizeable PoC from CV use cases | | Ted Guild
Sven
Thomas
Sprechley | Include Wally
and RP1226? | | CV coordination | RP1226, VDV, FMS Cloud, in-vehicle port, in-vehicle API | | Thomas
Sprechley Te | | | Android Infotainment quality analysis by end-user behavior modeling and vehicle data | How to find those tricky AOSP system issues as e.g. memory leaks during an infotainment project | | Emil Dautovic
Tero
Aaltonen | | | Empowering digital services | -Developing an Open Standardized gRPC-enabled VISS API towards Android Automotive OS -Enables securely sharing subset vehicle sensor data towards service providers -Smartification/Smart sensing using VISS Curve logging -RemotiveLabs virtual sensor platform as VSS data provider | | Emil Dautovic
Ulf
Bjorkengren | Presentation
will also
include Volvo
Cars
participation (
Renjith
Rajagopal,
Peter Winzell
and Kristoffer
Nilsson) | | Data Acquisition beyond VSS | VSS is a good starting for data collection, but that is only the start. Flexible data collection requires much more. The talk with outline additional areas of collaboration in COVESA to support vehicle-to-cloud dynamic data management. | 30–45 | James Hunt | | | Data Middleware
enabling offline-
first Telemetry
Collection and
real-time
decision making
with an in-car
knowledge layer. | This talk explores three aspects of automotive data architecture: To recap of bi-directional sync in the Porto and Detroit projects for seamless offline data exchange. To introduce uni-directional data collection's role in analytics and machine learning. To explain the in-car knowledge layer for real-time decision making, with practical industry examples. | 30-45 | Haonan Qiu Christian Muehlbauer @andre wendel Arnal do Vera Hum za Akhtar | Possibly joint
sessionChristi
an
Muehlbauer
and Arnaldo
Vera | | In-vehicle data
storage and data
sharing in case
of cloud
disconnection. | Beyond traditional in-vehicle data transfer and storage, unique user experiences can be unlocked with a robust data middleware. In this technical talk, we will explore the different architectural patterns, challenges and ways of implementing in-vehicle data transfer and storage with MongoDB's Edge Server. As well as how VSS is implemented and some peep into the future of embedded databases. | 30-45 | Arnaldo Vera
Humza
Akhtar | | | A Framework
Approach to
Standardizing
Consent
Management in
Software-
Defined Vehicles | As the automotive industry evolves, the concept of the software-defined vehicle (SDV) has emerged as a pivotal innovation, offering unparalleled flexibility, customization, and new functionalities. However, this evolution introduces complex challenges in consent management. The requirement for accurate consented data, the complexity of user consent interfaces, and the need for interoperability among diverse systems and jurisdictions calls for a standardized framework to not only ensure privacy but also security. This presentation proposes an approach for developing a framework for consent management. | 30 | Philippe Le
Berre, 360 of
Me | | | In-Vehicle API
(joining forces
with AUTOSAR) | The in-vehicle API is based in the COVESA VSS and is linking the Open-Source-Software to the AUTOSAR-technology. The API is shown as standardized "OpenAPI.V3"-specification including error messages. A first implementation shows, how to create a REST-API with Swagger and to "read/write"-vehicle signals from the KUKSA-server. | | Dr. Henkel, D
irector in
Systems Engi
neering &
Technical
Strategy
Mobility (BO
SCH) | | | Wallet for in-car
payment with
self souvereign
identities (SSI) | Future Car2X services rely heavily on secure and efficient identity verification and data management. The Vehicle Signal Specification (VSS) may be used with payment options combined with Self Sovereign Identity (SSI) to configure the vehicle based on a driver ID stored in a digital vehicle wallet. | | | Peter
Busch, Prod
uct Owner
DLT Mobility | | |--|---|-------------------------|-------|---|---| | Title: VSOMEIP | Topic/Abstract: • VSOMEIP and VSS | | | Adnan Bekan
TBD | | | Towards a vehicle DATA specification | Limits of VSS Previous attempts for expressivity An API-first approach to generically model data of vehicle properties Decoupling logical and physical layers. Integration of domains. | 45 min. | | Daniel
Alvarez
Daniel Wilms | Possible joint
session with
Daniel Wilms
(SPREAD
GmbH) | | A professional
benchmark for
decision
making tools | A call for participation Using COVESA artifacts to enable a professional benchmark for the decision-making tasks on data streams. Including, but not limited to: Data stream processing Complex event processing Stream Reasoning | 15 min. | | Daniel
Alvarez
Haonan Qiu | Possible joint session with RemotiveLabs | | How did you
cook it? About
Honda's AAOS-
based IVI system | The Accord released in 2023 is equipped with an AAOS-based IVI system. Honda has implemented in-house software development for the first time with this model and will introduce a wide range of topics from the establishment of the organization to the customization points of AAOS. | 45 min
(30min + Q&A) | Weds? | Yuichi
Kusakabe
Honda Motor
Company | Stephen
Lawrence:
Suggest
Weds to be
on same day
as other
Android
presentations. |